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A simulation study using the Capsis platform.
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ABSTRACT

Spatially explicit Individual Based Models are more and more often used in forest modelling, especially because they take
into account the influence of the spatial structure on the dynamics. However, they are potentially very sensitive to the initial
spatial structure used for a simulation, which can be problematic if the initial state is not known, or is simulated in an
unrealistic way.

The aim of our paper is to study this sensitivity to initial spatial structure in the case of the Mountain model, an individual
based model of irregular spruce stands implemented in the Capsis platform. In order to characterise the influence of the initial
spatial structure on the dynamics of the model, we simulated different initial spatial structures and compared the results of
long term simulations.

We showed that the initial spatial structure can highly influence the dynamics of the model, not only during the first cycle of
the evolution, but also at very long term in the evolution of the next generations. We also illustrated how some disturbances,
such as a periodic gap opening through storms, can modify both the long term dynamics of the stand and the duration of the
influence of the initial spatial structure.
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1. Introduction

Individual Based Models (IBM) are more and more often used in forest modelling (e.g. [Ek Monserud 1979] [Tomé Burkhart
1989]), especially for complex forest stands with mixed tree species or irregularity in size or age. Because they consider each
tree individually, individual based models can take into account the high variability of such stands [Spellmann 1992]. This
was impossible with simpler stand level models, based on mean properties at the stand level such as density or total basal
area [Houllier ez al. 1991]. Different forest growth simulators have been recently developed to integrate both stand level and
individual based forest models (e.g. [Pretzsch er al. 2002] [de Coligny et al. 2004]), and can be used either as management
tools or for research purposes.

Some of these IBM are moreover spatially explicit, which means that they also consider each tree location. With such
models, it is possible to characterise the local neighbourhood around each tree through competition indices. Many different
competition indices can be found in the literature, taking into account the number, size and location of neighbouring trees
[Biging Dobbertin 1995]. One advantage of such models is that they take explicitly into account the influence of the spatial
structure of an ecosystem on its dynamics. This relation between spatial structure and dynamics is considered as an important
process in many ecosystems, and has been thoroughly studied (e.g. [Begon ef al. 1990] [Dieckmann et al. 2000]). For
instance in forest stands trees located in aggregates are supposed to grow less than isolated trees, because of the competition
for light or nutrients. However, spatially explicit models also have the drawback of requiring very detailed initial states,
including the location of all trees at the beginning of the simulation. Such data are very seldom available for real forests.
Therefore, most of the time it is necessary to simulate a "virtual" initial state, i.e. a set of numbers representing the species,
diameter, and location of simulated trees ([Pretzsch 1997] [Goreaud et al. 2004]).
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Precisely because they take into account the influence of the spatial structure of a forest stand on its dynamics, spatially
explicit individual based models are likely to be very sensitive to the initial spatial structure used in a simulation. In real
forest ecosystems, the influence of the spatial structure on the dynamics is usually supposed to be a short term influence,
because many stochastic events (either natural disturbances such as storms, or human sylvicultural actions such as thinning)
can modify the spatial structure and thus the growing conditions (e.g. [Pontailler et al. 1997] [Wolf et al. 2003]). However,
ecological models do not always include as much stochasticity, and can sometime show a long term sensitivity to the initial
spatial structure ([Dubé et al. 2001] [Goreaud et al. 2002] [Ménard et al. 2002]). This problem is quite general and can be
encountered in other types of models, for instance cellular automaton or grid based models [Dieckmann et al. 2000].

This high sensitivity of individual based models can become a real problem if the spatial structure of the initial state is not
known, or is simulated in an unrealistic way, because in that case it can lead to unrealistic simulation results. Unfortunately,
this is often the case. Most of the time, the initial state of a simulation is simulated very simply, using random, clumped or
regular patterns. Only very few studies propose to really fit a model of spatial structure on real data, or to estimate the realism
of the spatial structure simulated as initial states for forest growth models ([Rathbun Cressie 1994] [Batista Maguire 1998]
[Prévosto et al. 2003] [Goreaud et al. 2004]). In order to avoid this problem, some authors prefer not to consider the first part
of a simulation, supposing it can be unrealistic because of the dependence on the initial state. This method however makes
the implicit hypotheses (i) that the dynamics of the model will converge toward an equilibrium state independently of the
initial state, which may not be the case, and also (ii) that the transition period is not too long.

Therefore, we believe it is important, before using a spatially explicit individual based model, to study how much it is
sensitive to the initial state, and more precisely to estimate how long this influence can affect its dynamics.

The aim of our paper is to study this sensitivity to initial spatial structure in the case of the Mountain model, an individual
based model of irregular spruce stands [Courbaud ez al. 2001]. This model (detailed in section 2.1) is implemented in the
Capsis platform (section 2.2), which facilitates the simulation work [de Coligny ef al. 2004].

In order to characterise the influence of the initial spatial structure on the dynamics of the model, we simulated different
initial spatial structures (section 2.3), and compared the results of the corresponding long term simulations. We hypothesised
that significant differences will occur as long as the initial state has some influence on the dynamics. However, as our model
is stochastic, we could not simply compare the evolution curves between two simulations. We therefore used Monte Carlo
simulations to represent the variability of the results (section 2.4). We first used a given initial state to assess the intrinsic
variability of the model (section 3.1). Then we used a set of simulations with an initial spatial structure corresponding to our
null hypothesis of Complete Spatial Randomness (section 3.2). Then, when using different initial spatial structures (section
3.3) we considered that any additional variability corresponds to the influence of the initial spatial structure on the dynamics.

We also wanted to test if potential disturbances, such as storms, could affect the duration of this influence of the initial spatial
structure on the dynamics. We therefore handled two sets of simulations : A first one without any disturbance (section 3), and
a second one corresponding to disturbed dynamics with periodic gap opening through storms (section 4).

We finally discuss the consequences of such sensitivity on the use of the model.
2. Material & Method

2.1. The model "Mountain"

"Mountain" is a spatially explicit, individual based model simulating the dynamics of irregular mountain spruce stands
[Courbaud et al. 2001]. Figure 1 summarises the different processes included in Mountain. Each tree is represented by its
spatial co-ordinates, height, diameter at breast height, crown base height and crown base diameter. Competition interactions
are modelled through the calculation of the radiation intercepted by every tree in the stand taking into account the shading
effect of its neighbours in three dimensions [Courbaud ef al. 2003]. Each year, the model simulates the individual height and
diameter increments corresponding to a vegetation season, as functions of the initial dimensions of the tree and the amount of
radiation intercepted. Regeneration is simulated in openings by a probability of installation of new seedlings on every ground
cell with irradiance higher than a given threshold. Seedling growth depends on the irradiance of their ground cell, until they
reach a height of 1.30 m. They are then recruited as trees with all the related attributes. Mortality is modelled with two
processes : a first probability of mortality depending on the radiation intercepted by a tree, simulating competition effects;
and a second probability of mortality depending on tree height, simulating senescence and disturbance effects.

The Mountain model has been fitted and validated on data from two experimental plots in the French Alps [Courbaud 1997].
It is implemented in the Capsis platform, freely available on the Capsis Project homepage (http://capsis.free.fr).
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Figure 1 : The chain of processes successively simulated in the model mountain. The initialisation phase downloads or
creates an initial stand, creates the ground cells and the light rays. During each vegetation season, the model first calculates
radiation interception, then growth and mortality, and finally regeneration and recruitment. A scenario can alternate periods
of growth and steps of silvicultural operations.

2.2. The Capsis platform

Capsis (Computer-Aided Projection for Strategies In Silviculture) is a generic forest simulator which has been developed by
French researchers since 1994 ([Dreyfus Bonnet 1997] [de Coligny et al. 2004]). The objective of the Capsis project is to
build a perennial, open and shared modelling platform (1) to contribute to the development and evaluation of models, (2) to
share tools and methods, (3) to compare results of different models, (4) to transfer models to forest managers and (5) to serve
as teaching material.

The version 4 of Capsis (figure 2) is generic enough to integrate very different kinds of models: stand models, distance
independent or spatially explicit tree models, individual based or not, wood quality models, seed dispersal models, etc. It
provides forest management tools to establish and compare different silvicultural scenarios. At the present time, Capsis hosts
25 models and 5 specific libraries which are all being co-developed by researchers and computer scientists. This shared forest
modelling platform has already showed many advantages : allowing modellers to re-use sub-models and share specific tools
and providing to foresters and students an easy-to-use software to compare different management strategies.
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Figure 2 - A glance at Capsis4 : Project manager with two scenarios, a stand viewer, and a graphic.

In this paper, we simulated 1500 stand evolutions, each of them being quite long because of the computation of light rays
trajectory for each trees (up to 5000 trees in a 1ha stand) at each time step. We therefore used the script pilot of Capsis to run
the simulations on a cluster of 48 PCs, using approximately a total of 8300 h CPU time.
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2.3. Simulating different initial spatial structures

In order to study the influence of the initial spatial structure on the dynamics of the model, we defined different initial states,
composed of the same trees in terms of age and size, but with different spatial structures. We chose to consider a 1 ha young
stand, composed of 5000 trees with the same 2cm diameter, and a mean height of 1.5m. Such a stand could correspond to a
natural regeneration after a clear cutting. For all initial states we used exactly the same trees, and only modified their location.
We used the classical point process formalism to simulate spatial patterns (e.g. [Diggle 1983] [Tomppo 1986] [Cressie
1993]), and the corresponding tools of the "spatial library" in Capsis [de Coligny et al. 2004].

We first ran a set of simulations with the same initial state (section 3.1), in order to characterise the variability corresponding
to the intrinsic stochasticity of the model. For these simulations, we used one given realisation of a Poisson process as spatial
pattern for the initial state. The locations of these trees correspond to the map in figure 3a.

We then used very classically as null hypothesis the Complete Spatial Randomness hypothesis (CSR), corresponding to the
absence of constraint in the location of trees. This spatial structure is easily simulated by a Poisson process [Diggle 1983], for
which the co-ordinates of each tree are random numbers. We have considered the variability resulting from this CSR initial
states as a reference for our comparison work (c.f. section 3.2).

Finally, in order to simulate other very different spatial patterns, corresponding to highly variable spatial structure, we used a
generalised Gibbs process with random values of the parameters, as defined in [Goreaud ef al. 2002]. Gibbs point processes
are classically used to simulate complex patterns [Diggle 1983]. The general principle of Gibbs processes is to define a
pairwise cost function, whose values will lead either to aggregation, or to regularity, at various scales. When using it with
random values of the parameters, we simulated very highly variable spatial structures, from aggregation to regularity, at
different scales and intensity. Details of the algorithm can be found in [Goreaud et al. 2002]. Figure 3b and 3c illustrate two
possible initial states, with the same trees, but very different spatial structures simulated with this Gibbs point process. When
running a set of simulations with these highly different initial states, we have considered that the additional variability
corresponds to the influence of the initial spatial structure on the dynamics.

e
(©)

o’ & || ¥ Gibhs2.0 - Visualisateur Mountain

= CSR.0 - Visualisateur Mountain. SFE = Gibhs1.0 - Visualisateur Mauntain

L3 -
% g

o

Figure 3 : Example of three initial states corresponding to the same trees, but to different spatial structure. (a) : Complete
Spatial Randomness (CSR); (b) & (¢) : Complex structures simulated with a Gibbs Process.

2.4. Long term simulations

Because we wanted to determine how long the spatial structure of the initial state can influence the dynamics of the Mountain
model, we ran very long term simulations of 1000 years. The usual life time for trees is over 100 years, so a 1000 years
period enables to simulate successive generations, and thus to let mortality and regeneration express themselves and modify
the spatial structure of the stand. Note that such long term simulations are not realistic, and therefore must only be used to
study the behaviour of a model [Shugart 1984], and not for predictive purposes.

We defined a few global variables to represent the dynamics of the stand, and followed their evolution during this 1000 years
period. For each simulation, the model simulates the evolution of each tree, from its birth to its death. This corresponds to a
huge amount of data. Therefore, we decided to focus on the evolution of some classical mean values at the stand level. In this
paper, we have more precisely considered the evolution of : (i) N : the total number of trees in the stand; (ii) G : the total
basal area, which is an indirect measure of the biomass of the ecosystem; (iii) Dg : the mean quadratic diameter, which
characterises the mean evolution of each individual tree; and (iv) CE : the Clark & Evans index, which characterises the
spatial structure of the stand (CE is a normalised measure of the distance to nearest neighbour : CE=1 for a random pattern,
CE<1 for aggregation and CE>1 for regularity [Cressie 1993]).
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For each set of parameters, we used 100 Monte Carlo simulations to represent the variability of the results. Indeed, the
Mountain model is intrinsically stochastic, especially because the mortality and regeneration sub-models are probability
models. For a given set of parameters and a given initial state, each simulation will lead to different choices of dying trees or
regeneration locations, and thus to somehow different evolutions of the stand. Moreover, as the distribution of these curves
does not follow a Gaussian distribution, it was not possible to use only the mean and standard deviation. In this simulation
study, we thus obtained 100 different evolution curves for each variable of the stand, and we characterised the variability of
these results by considering the max and min values of the simulated variables for each time step (see 3.3).

The different values for the parameters we used for these simulations are detailed in Table 1. They mostly correspond to the
values obtained when fitting the model on two experimental plots in the French Alps [Courbaud 1997]. We used the same
values of the parameters for all simulations, except for the parameters concerning disturbances. In the first set of simulation
(section 3), those parameters were set to 0 so that no disturbance occur. Then, in section 4 we considered different values to
assess the impact of disturbances on the dynamics.

Table 1 : Values of the main parameters of the simulations.

Main parameters corresponding to : value
Crown :

treeLeafAreaDensity Leaf area density 0.8 m*/m’
maxCrownRadius Maximum crown radius S5m
Growth :

growthHmax Maximum height 40 m
growthdHmax Maximum height increment 45 cm/year
growthRH2 Height radiation threshold : over this value, height growth is maximum 40 %
growthDmax Maximum diameter 90 cm
growthdDmax Maximum diameter increment 8 mm/year
growthRD2 Diameter radiation threshold : over this value, diameter growth is maximum |80 %

Regeneration :

seedlingStep Time between two seeding events 10 years
limitEnergyInf Sapling minimum radiation : under this value, no regeneration can occur 20 %
saplingPotHeightIncrement Sapling maximum height increment 25 cm/year
recruitDensity Sapling density 0.2 sap./m?
Mortality :

deathPmax Death maximum probability (for a tree with a null diameter increment) 0.5
deathLimitdD Minimum diameter increment : under this value there is a risk of mortality 0.75 mm/year
Disturbances :

gapRadius Gap radius 0,5,10,20 m
disturbanceStep Gap frequency : number of years between 2 successive gap openings 5 or 10 years

3. Influence of the spatial structure on the undisturbed dynamics

In this first step of our study, we characterised the influence of the initial spatial structure of a simulation on the undisturbed
dynamics of the stand modelled by the Mountain model. We therefore set the values of the parameters so that no disturbance
occurs (i.e. no natural phenomenon such as storm, and no human actions such as thinning).
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3.1. Taking into account the intrinsic stochasticity of the model

We have first considered a set of 100 simulations corresponding to 1000 years evolution of a stand with this undisturbed
model, using always the same initial state, corresponding to the random pattern presented in figure 3a. At the beginning of
each simulation the stand was always the same, but then progressively the stochasticity of the model led to different
evolutions. Figure 4 shows the curves corresponding to the evolution of 4 global variables, that illustrate the evolution of the
stand for these 100 simulations : the total number of trees, the total basal area, the mean quadratic diameter, and Clark &
Evans index (see 2.4).
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Figure 4 : Curves of 1000 years evolution for 100 simulations with the same initial state. (a) Number of trees in the stand, (b)
total basal area, (c) mean quadratic diameter, (d) Clark & Evans index.

We can first notice that the simulations followed a rather cyclic evolution pattern, with a cycle of approximately 250 years.
This cyclic evolution seems to correspond to 4 successive generations of trees, following more or less a regular stand
dynamics. However, the third cycle does not seem to be very clearly defined. The first cycle is really characteristic to this
regular stand dynamic, which is not surprising as our initial state corresponded to a very young and regular stand. However,
we have also obtained similar cyclic evolution patterns with other initial states, and especially with initial states
corresponding to real irregular experimental plots. Therefore, we believe that this cyclic evolution pattern characterises a
potentially frequent behaviour of the model.

In the first cycle, we can identify the 4 main phases of forest dynamics [Oliver Larson 1996] : First the initiation phase (up to
30 years), corresponding to a progressive closure of the canopy with a fast increase of G (and fluctuations of N) ; then the
stem exclusion phase (up to 75 years), with a fast decrease of N through competition and mortality (called self-thinning) but
still an increase of G through the growth of surviving trees ; third the senescence phase (up to 220 years), with a decrease of
both N and G, corresponding to the death of old and big trees ; and finally the renewal phase (up to 250 years) with a massive
regeneration inducing an increase of N, whereas the death of the last old trees leads to a decrease of G. [Dubé et al. 2001],
simulating northern hardwood forest succession over 1000 years, also obtained cyclic behaviour around 200-250 years.

There is however also a variability around this mean pattern, which is the result of the stochasticity of the model. This
variability increases with time (which is quite usual with stochastic models) : at the beginning of the evolution the various
simulated stands remained very similar, but then progressively the stochasticity of the model led to different evolutions. This
is especially the case at the end of each cycle, when the regeneration process, which is highly stochastic, expressed itself on a
wide area. As we used here always the same initial state, we have considered that this variability in the evolution curves
really corresponds to the intrinsic stochasticity of the model, i.e. the use of random numbers when simulating mortality and
regeneration.
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3.2. Null hypothesis of Complete Spatial Randomness

The usual null hypothesis when studying the influence of spatial structure on the dynamics of ecosystems is the hypothesis of
Complete Spatial Randomness [Cressie 1993]. This null hypothesis is more complex than a given initial state with a precise
location of individuals, as we used in (3.1). Indeed, this null hypothesis corresponds to one given point process (the Poisson
process), and thus to an infinite number of potential realisations. In each realisation, that can be used as an initial state, the
locations of trees are different, but all realisations correspond to the CSR spatial structure. This stochasticity in the location of
trees for a given spatial structure can bring an additional variability in the simulation results. Therefore, when using the
model with the null hypothesis of CSR, the global variability of the results is composed of both the intrinsic variability of the
model and the variability induced by the stochasticity of the CSR initial state.

In order to characterise this variability, corresponding to our null hypothesis, we have considered another set of 100
simulations corresponding to 1000 years evolution (with the undisturbed model) of a stand whose initial states all follow a
completely random initial spatial structure simulated by a Poisson process. Figure 5 shows the curves corresponding to the
evolution of the same 4 global variables than previously (the total number of trees, the total basal area, the mean quadratic
diameter, and Clark & Evans index) for these 100 simulations.
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Figure 5 : Curves of 1000 years evolution for 100 simulations with a CSR initial spatial structure. (a) Number of trees in the
stand, (b) total basal area, (c) mean quadratic diameter, (d) Clark & Evans index.

The results of these simulations are quite similar to those obtained previously, except for two details. First, as we expected,
the evolution curves corresponding to our null hypothesis have a slightly higher variability, especially during the first cycle.
This is due to the additional stochasticity induced by the different locations of trees in each initial state. Second, the evolution
curve have a much clearer periodicity : each cycle is more precisely defined than when using the same initial state (cf. 3.1).
We therefore hypothesised that this cyclic evolution was indeed characteristic of the dynamics of a stand with a CSR initial
structure, and that the unclear third cycle obtained in (3.1) was only a specificity of the precise locations of trees used in the
initial pattern. This difference illustrates the interest of using the CSR spatial structure as null hypothesis instead of a given
initial state.

We therefore considered this variability, obtained with our CSR null hypothesis initial state, as a reference for our
comparison work.

3.3. Long term dynamics with a highly variable initial spatial structure
We have then considered another set of 100 simulations, still corresponding to 1000 years evolution of a stand with the
undisturbed model, but this time with very different initial states, corresponding to the same trees (in terms of size and age),
223
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but to highly variable spatial structures simulated by a Gibbs process (c.f. 2.3). Figure 6 shows the curves corresponding to
the evolution of the same 4 global variables (the total number of trees, the total basal area, the mean quadratic diameter, and
Clark & Evans index) for these 100 simulations.

These results confirm that the initial spatial structure can highly influence the dynamics of the model. Indeed, these
simulations followed the same overall evolution pattern than the previous ones corresponding to our null hypothesis (c.f. 3.2),
but with a much higher variability around this global pattern. This high variability means that the differences in the spatial
structure of the initial state have led to evolutions significantly different from those obtained under our null hypothesis. It
seems to be especially true in the first cycle of the evolution, probably because the different initial spatial structures had
already led to different competition contexts, and thus to some variability in the evolution of the global variables of the stand,
whereas the simulations beginning with a CSR initial state had a very small variability of the competition context.
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Figure 6 : Curves of 1000 years evolution for 100 simulations with a highly variable initial spatial structure simulated by a
Gibbs process. (a) Number of trees in the stand, (b) total basal area, (c) mean quadratic diameter, (d) Clark & Evans index.

In order to clarify this phenomenon, we focused on the simulations corresponding to the most extreme initial states. Using the
initial values of the Clark & Evans index, which characterises the spatial structure of the stand, we chose the 5 most
aggregated (smallest values of CE) and the 5 most regular (highest values of CE) initial states, and compared their simulated
evolution (figure 7). We obtained very different behaviours up to 1000 years, which confirms that the initial spatial structure
can influence the dynamics of the model on a very long term.

We also noticed a very interesting phenomenon of alternative modification of the relative location of these curves. Thus, at
the beginning of the first cycle, some trees of the most aggregated stands (blue) died rapidly, probably because the
competition was too harsh in the centre of aggregates. Therefore, the total basal area became and stayed lower during the
stem exclusion phase (until 75 years). Then, as the competition and the mortality increased, the mean and total basal area
became lower in the most regular stands (green). We assume that, in aggregated stands the spatial structure had already led to
an important differentiation, so that only small dominated trees died, whereas a lower differentiation in regular stands
induced the death of bigger trees. Finally, the regeneration was larger in formerly regular stands, probably because more light
was available everywhere in the stand. During the next cycles, the relative location of the curves swapped, which could be the
result of an inversion in the spatial structure of the successive stands, as suggested by the Clark & Evans index. The precise
interpretation of this phenomenon would however require to identify the different cohorts in the stand.
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Figure 7 : Curves of 1000 years evolution for the 5 most aggregated (blue) and the 5 most regular (green) initial states. (a)
Number of trees in the stand, (b) total basal area, (c) mean quadratic diameter, (d) Clark & Evans index.

3.4. Quantifying the influence of the initial spatial structure

In order to measure more precisely this increase of variability, we have used a very simple and classical Monte Carlo
approach, comparing the min and max values of the different variables for both sets of simulations, corresponding either to
our null hypothesis of CSR, or to highly variable spatial structure (figure 8). In fact, min and max values of a set of N
simulations can be used to estimate a confidence interval corresponding to a significance level alpha of 1/(N+1).
Unfortunately, this estimator is not very robust, and can lead to imprecise estimates of the confidence intervals. More precise
estimates of the confidence intervals can be obtained by using order statistics (see for instance [Cressie 1993]), but this
requires more simulations. In this paper, we chose to simply use min and max values to characterise the variability of the
model, and we assumed that large differences of these min and max values are the result of a significant influence of the
initial spatial structure on the dynamics.

First, when looking at the first cycle of the simulation (until 250 years), we can notice that there are very large differences of
the variability of the results at all time step and for all variables. This corresponds to the direct effect of the differences in the
initial spatial structures, who have led to different competition contexts for the trees of the first generation. We can thus
conclude that the dynamics of the stand modelled in Mountain, mainly based on the competition for light, has not
compensated for these different initial spatial structures.

Then, when looking at the next cycles, we can still point out some large differences of the variability of the results at some
periods, even after a very long evolution (for instance 800 years). This means that the initial spatial structure can have a very
long term influence on the dynamics of the model, even on the successive generations. We will discuss the implications of
this result in section 5. We can also notice that this difference of the variability is larger at certain specific phases of the
dynamics, and can differ from one variable to another. This is probably due to the fact that the stochasticity is mainly the
result of the regeneration process, and that the impact of the regeneration is not similar for the different variables. For
instance, a huge regeneration modifies the number of trees immediately, but as the new trees are small it does not modify the
total basal area much.

In real forest stand, the spatial structure is usually not considered to have such a long term influence on the dynamics, and we
therefore supposed it to be an artefact of the model. Indeed, real stand encounter many disturbances, and we can hypothesise
that such stochastic events can shorten the influence of the spatial structure on the dynamics. This is what we have tested with
the additional simulations presented in chapter 4.
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Figure 8 : Min and max values of the evolution curves for 100 simulations from a CSR initial spatial structure (red), and 100
simulations from a highly variable initial spatial structure (blue). Purple arrows point out the large differences of the
variability. (a) Total number of trees in the stand; (b) total basal area; (c) mean quadratic diameter; (d) Clark & Evans index.

4. Taking disturbances into account

In this second step of our study, we characterised the influence of the spatial structure of the initial state of a simulation when
the dynamics of the stand, modelled by the Mountain model, is periodically disturbed by storms. We therefore set the values
of the parameters so that storms occurred, at different rhythms (every 5 or 10 years), leading to gap openings of different
radius (5, 10 or 20 m).

We have first considered a disturbance corresponding to the opening of a 10m radius gap every 5 years, which is already a
strong disturbance. We ran a new set of 100 simulations, corresponding to 1000 years evolution of a stand with very different
initial states, with the Mountain model including this specific periodic disturbance. Figure 9 shows the curves corresponding
to the evolution of the same 4 global variables (the total number of trees, the total basal area, the mean quadratic diameter,
and Clark & Evans index) for these 100 simulations.

The simulation of this disturbance has completely modified the shape and the variability of the evolution curves. The
different variables of the stand did not have cyclic evolution any more. The first 250 years still correspond roughly to the
beginning of the first cycle simulated by the undisturbed model (see section 3), but then the disturbances have modified the
stand sufficiently to avoid a new cyclic evolution of the stand, so that the variables converged toward equilibrium values,
with small stochastic variations.

The variability of the curves is also smaller, and we have compared it to the corresponding variability when simulating the
disturbed model with an initial state following CSR (figure 10). We can notice that the variability of the simulations with
highly different initial spatial structures is slightly higher, but only during the 250 first years. We can therefore conclude that
the disturbances have lowered the sensitivity of the model to the initial spatial structure, so that the influence of this spatial
structure lasts less than 250 years in the disturbed model.

In order to characterise the sensitivity of the model to these disturbances, we have run other sets of simulations,
corresponding to other values of the disturbance parameters : gap radius of 5, 10 or 20 m for 1 opening every 5 or 10 years.
Table 2 presents the global behaviour of the simulations with these parameters. These results show that only large and
frequent openings were able to modify the cyclic dynamics of the stand. We can conclude that small openings did not modify
the spatial structure of the stand enough to influence its dynamics.

226

Blaise Pascal University ©OICMS 2005



Evolution of N over 1000 years

100 200 300 400 500 600 700 800 900 1000

. time| | o L

@)

b
Evolution of G over 1000 years ®)

T T T T T T T T T < time

100 200 300 400 500 600 700 800 900 1000

Evolution of Dg over 1000 years

(©

Evolution of CE over 1000 years @

0.8 4
06 L
04
0.2
0 T T T T T T T T T 7 time 0 T T T T - - - - . < time
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000

Figure 9 : Curves of 1000 years evolution for 100 simulations with a highly variable initial spatial structure simulated by a
Gibbs process, and periodic openings of 10m radius gaps every 5 years. (a) Number of trees in the stand, (b) total basal area,

(c) mean qua

dratic diameter, (d) Clark & Evans index.
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Figure 10 : Min and max values of the evolution curves for 100 simulations from a CSR initial spatial structure (red), and 100
simulations from a highly variable initial spatial structure (blue), with periodic openings of 10m radius gaps every 5 years. (a)
Total number of trees in the stand; (b) total basal area; (¢) mean quadratic diameter; (d) Clark & Evans index.
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Table 2 : Global behaviour of the simulations for various disturbance parameters.

Gap radius = 5m Gap radius = 10m Gap radius =20m
1 opening every 5 years cyclic evolution pattern convergence fast convergence
1 opening every 10 years cyclic evolution pattern cyclic evolution pattern cyclic evolution pattern
without openings cyclic evolution pattern

5. Discussion

The long term sensitivity of forest models to the initial spatial structure has not been much studied and rises many questions
([Dubé et al. 2001] [Ménard et al. 2002]). In this paper, we have characterised this sensitivity for the Mountain model. We
have shown that the initial spatial structure highly influences the dynamics of the undisturbed model, not only during the
whole first cycle of the evolution (corresponding to the first generation), but also at a very long term at some periods in the
evolution of the next generations. Such a very long term sensitivity is usually not expected in stochastic models, especially
because the stochastic sub models (regeneration and mortality) highly modify the spatial structure and growing conditions of
the stand. In our case, this long term sensitivity may come from the fact that the three biological processes of growth,
mortality and regeneration are based on the same computation of available light, itself depending on the spatial structure of
the stand. This potentially very long term sensitivity is an additional argument for not using long term simulation for
prediction purposes

The importance of disturbances on the dynamics of forest stands has been more and more studied recently (e.g. [Pontailler et
al. 1997] [Wolf et al. 2003] [Cordonnier 2004]). In this paper, we have illustrated how the addition of some disturbances in
the model (such as a periodic gap opening through storms) can modify both the long term dynamics of the stand and the
duration of the influence of the initial spatial structure. These results are consistent with those obtained by [Dubé et al. 2001],
and [Ménard et al. 2002] with another forest model. We have also shown that small disturbances are not always sufficient to
modify the dynamics of the stand or to lower the influence of the initial state. A finer exploration will be necessary to
determine precisely the threshold values of these parameters.

These results confirm that long term simulations can be very interesting to study the behaviour of a model, but must not be
used for predictions. Long term simulations of forest models are usually considered as not realistic at all, for different
reasons. Firstly, forest stands growth models are usually fitted and validated on very short time periods (classically from 5 to
20 years). Their extrapolation on longer periods is not validated and can lead to errors accumulation. Secondly, the
environmental conditions that are supposed to be constant in the model are likely to change during a long period [Dhote
Hervé 2000]. Thirdly, mortality and regeneration are very complex processes, that are still not well understood and not very
precisely modelled. Other processes, such as different sorts of natural disturbances and human actions can not be planned on
such a long period. In this paper, we pointed out the potential very long term sensitivity of forest models, that appears to be
another argument for non using long term simulation in prediction purposes.

The potential sensitivity of forest growth models to the spatial structure of the initial state also questions the relevance of
using simulated or virtual initial states, even for short term simulations. Indeed, if the model is sensitive to the spatial
structure of the initial state, using an unrealistic initial spatial structure will lead to unrealistic results of the simulation.
Unfortunately, the simulation of initial states for individual based models is usually very simply done, and very few authors
evaluate the realism of these simulated initial stands ([Rathbun Cressie 1994] [Batista Maguire 1998] [Prévosto et al. 2003]
[Goreaud et al. 2004]). Our results therefore confirm the need to improve the realism of the simulation of initial states for
individual based models.

This study also points out the importance of disturbances, regeneration and mortality processes on both the simulated
dynamics and the sensitivity of the model. These three stochastic processes are still not as well understood as growth, and
thus the corresponding sub-models are often very simple. However, recent studies have illustrated their importance in the
dynamics of a forest ecosystem. We therefore believe that a specific effort on the development of these sub-models, and on
their integration in forest dynamics models could bring real improvement in the quality of the simulations, especially if we
want to use simulations on longer periods.

Finally, our results rise some interesting questions on the long term dynamics of forest stands. Of course in this paper we
obtained only some insights on the behaviour of the model, and not on the real forest ecosystem, as it is always the case with
simulation studies [Pavé 1994]. This is all especially true because the model we studied has not been validated on its ability
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to simulate long term dynamics, and such a very long term validation will probably remain impossible because it would
require very long time measurements. It would however be very interesting to test on real stands the main qualitative results
of the simulations, and especially the potentially long term influence of the initial spatial structure, and the role of
disturbances in lowering this influence. Indeed, the influence of the spatial structure is usually considered as a short term
process, precisely because many stochastic processes can modify the structure and the dynamics of a stand. However, this
phenomenon has been rarely studied, and could have major implications on forest management. The combined use of real
measures and simulation may facilitate the research work in this field.
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