Java training

AMAP

An introduction to Java

January 2020

Francois de Coligny — Nicolas Beudez

¥ INRAE - UMR AMAP
e botAny and Modelling of Plant Architecture and vegetation

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java training > Contents

Java training - Contents

Introduction

- history

- specificities

- programming environment
- installation

Bases
Object oriented programming (O.0.P.)

Resources

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java training > Introduction

History

James Gosling and Sun Microsystems
- Java: May 20, 1995

-Javal - Java 8 (i.e. 1.8), March 2014

- Oracle since 2010

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java training > Introduction

Specificities a’ﬁ p

Java is an object oriented language object = a software brick (see later)

- clean, simple and powerful

- Java: compiled and interpreted language

y

interpreter: Java Virtual

—» bytecode > Machine (JVM) —> _

J/ (Linux, Windows, macOS)

7/
7/

- bytecode is not machine code
- compilation on Linux, Windows or macOS: produces same bytecode

Java source - compiler
code (Linux, Windows, macOS)

‘ Java is portable (Linux, Windows, macOS):
"write once, run everywhere" (no recompilation is needed)

- static typing (checks during compilation)

- simpler than C++ (automatic memory management, no pointers, no headers...)

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java training > Introduction

Programming environment

contains the ‘java’ interpreter:

Java environment / JVM (Java Virtual Machine)
- JRE (Java Runtime Environment)

_ . JRE + the ‘javac’ compiler + ...
- JDK (Java Development Kit)

Several versions
- Jave SE (Standard Edition)
- Java EE (Enterprise Edition - Web)
- Java ME (Micro Edition)

Editors
- simple editors: Notepad++ (Windows), TextPad (Windows), SciTE (multi-platform),

gedit (multi-platform) — syntax coloring...
- IDEs (Integrated Development Environment):

Eclipse (multi-platform) — completion, refactoring...

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java training > Introduction
Installation a‘m% p

Windows / Linux

- download and install the JDK (Java SE 8)

- modify the PATH environment variable
add the javalbin/ directory (contains javac and java programs) at the beginning of
the PATH variable
e.g. C:/Program Files/Java/jdk1.8.0_102/bin (Windows)

/home/beudez/applications/jdk1.8.0_102/bin (Linux)

- install text editor:
TextPad or Notepad++ (Windows)
gedit, SciTE (multi-platform)

Check the installation
- in a terminal: javac -version and java -version

beudez@nicolas-HP:~5 java -version

java version "1.8.6 182"

Java(TM) SE Runtime Environment (build 1.8.0 _182-b14)

Java HotSpot(TM) 64-Bit Server VM (build 25.102-b14, mixed mode)

beudez@nicolas-HP:~S
beudez@nicolas-HP:~5 javac -version
javac 1.8.0 182
beudez@nicolas-HP:~$ |}

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java training > Bases

Bases

- a Java application

- the development process
- variables, simple types

- arithmetic operators

- boolean operators

- mathematical tools

- arrays

- conditions: if, else if, else
- loops: while, do... while

- loops: for

- loops: continue or break
- runtime exceptions

- exceptions management

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java training > Bases

A Java application ;{ﬁp

this package is a namespace,
matches a directory with same name
- training/Training.java

package training;

_——e /** Training application
comments 9 app

*/ a public class: class name = filename (Training.java
public class Training { ® P (g.java)

/** Main method . . .

* / o« the application entry point
static public void main (String[] args) {

// Prints to screen

System.out.println ("The Java training exercices"); L))
} instructions terminated by ;'

prints to screen

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java training > Bases

A Java application A

- Java programs are written with a text editor in files with a ".java' extension: sources files

- applications are .java files with a public static void main(...) {...} method

& - o training & - o0 Training.java (~/workspaceftrainingDir/training) - gedit

< | > + training - Q = v File Edit View Search Tools Documents

Name * Size Type Modified & g Open ~ i Save [md @y Undo . E \
= Training.java 230 bytes Text 14:23

= Training.java x
package training;

/** Training application
e

public class Training {

/** Main method
o
static public void main (String[] args) {
// Prints to screen
System.out.println ("The Java training exercices");

}
B

Java - Tab Width: 8 ~ Ln14, Col2 INS

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java training > Bases

A Java application

- to compile a Java application, use the javac compiler (part of the JDK) in a terminal
- returns a Java bytecode file: Training.class

r T R
@ — 0 coligny@marvin-13: ~fworkspace ftrainingDir . b =]
FlleEdlt VlewSearch Terminal Help . . : — - : < training Q = m v
coligny@marvin-13:~/workspace/trainingDir$ javac training/Training.java
coligny@marvin-13:~/workspace/trainingDir$ MName * | Size Type Maodified
3| Training.class 446 bytes Unknown 14:40
= Training.java 230 bytes Texk 14:23

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java training > Bases

A Java application a‘ﬁ'p

- to run a Java application, use the java interpreter (or Java Virtual Machine, JVM) in a terminal

— 0 coligny@marvin-13: ~fworkspaceftrainingDir

File Edit View Search Terminal Help
coligny@marvin-13:~/workspace/trainingDir$ java training.Training
The Java training exercices

o coligny@marvin-13:~/workspace/trainingDir$ I

the result

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

11

12
Java training > Bases

The development process : : a‘m% p

4 e 8]

File Edit View Search Tools Documents

o |lg Open - iSave = @ Undo \
= Training.java X
package training; r !
f*; Training appliFjle Edit View Search Tools Documents
. *
create / modify source code | 7y public class Train |4 |ggOpen + Zlsave () @ Undo ’

| /** Main method | = Trainingjava x
= package training;
v statuc public vg
/! Prints to s /++ Training application

. System.out.pri =+
source code ('Java)] public class Training {

| } /** Main method

\4 “

static public void main (String[] args) {

J// Prints to screen
compile source code (with javac) . System.out.println ("The Java training exercices");
I
* ‘\ JE}
. . E e l-

compilation errors FT - io Ign);@mar:
e i iew Searc
bytecode (.class) et e s

¢ R

run bytecode (with java)

Java - Tab Width: 8 ~ Lng, Col8 INS

@ — 0O coligny@marvin-13: ~/workspace/trainingDir
IR ONGLEIRAN B ER File Edit View Search Terminal Help

coligny@marvin-13:~/workspace/trainingDir$ javac training/Trai
ning. java
| coligny@marvin-13:~/workspace/trainingDir$ I

\ 4

result

*—

runtime errors /
incorrect result

errors fixed, result is correct

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java training > Bases

Variables, simple types

AMAP
Variable
- a variable has a type and holds a value
- a variable name starts with a lowercase letter (convention), e.g. myVariable
Type | Size (bits) Minimum value Maximum value Example
byte 8 -128 (= -28/2) 127 (= 28/2-1) byte b = 65;
Integer | short 16 -32 768 (= -2%/2) 32 767 (= 2'°/2-1) short s = 65;
types: int 32 -2 147 483 648 (= -2%/2) -2 147 483 647 (= 2%/2-1) int i = 65;
-9 223 372 036 854 775 808 9223 372 036 854 775 807 _)
long 64 (= -2%/2) (= 29/2-1) long 1L = 65L;
Floati Type Size (bits) Absolute minimum value Absolute maximum value Example
oatin
types: 9 float 32 1.40239846 x 10 3.40282347 x 10%* float f = 65f;
double 64 4.9406564584124654 x 10°%* | 1.797693134862316 x 10°*® | double d = 65.55;
T Size (bit E I .+ value assignment
Character: ype | Size (OF) s Declaration __-=""
char 16 char c = 'A'; w="
int i = 0; &
double a = 5.3;
boolean found = false;
Boolean: Type Size (bits) Example char letter = "z';
boolean boolean b = true; SEring name = TRODETtT & e e

not a simple type (seen later)

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

14
Java training > Bases

Arithmetic operators a‘m% p

Arithmetic / ndex=indexe2

-simple: +, -, *, |, % / i++; (same as:i=i+l))
- increment / decrement; ++, --

_ index += 2; (same as: index = index+2;)
- combined: 4=, -=, *= |= o ——

- precedence with parentheses (@+b)*c

- comparison: <, <=, >, >= ==, I=
String concatenation:
. oL “a string” + something turns something into a String
Beware of the int division and appends it
double r = 3d / 2d;
double s = 3 / 2;
System.out.println ("r: "+ r + " s: " + s);

coligny@marvin-13:~/workspace/trainingDir$ javac training/PrimitiveTypes.java
coligny@marvin-13:~/workspace/trainingDir$ java training.PrimitiveTypes

r: 1.5 s: 1.0

Caution /

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java training > Bases

Boolean operators

Boolean variables are true or false boolean v = true;

Boolean calculation
-AND: &&
- inclusive OR: ||
- NOT: !
- test equality: ==
- test non equality: 1=
- use () for precedence

(a<b) && (c<d)

IS true if the two expressions a<b and c<d are both true, is false otherwise
(a<b) || (c<d)

is true if at least one of the two expressions a<b and c<d is true, is false otherwise
I(a<h)

IS true if the expression a<b is false, is false otherwise (same value than a>=b)

boolean found = isFileInSystem("trees.txt");
if (found)

readFile("trees.txt"); if (found) <——> if (found == true)
}

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

15

AMAFP

Java training > Bases

Mathematical tools Ny

Constants
- Math.PI, Math.E

Trigonometry and other operations
- Math.cos(), Math.sin(), Math.tan()...
- Math.pow(), Math.sqgrt(), Math.abs(), Math.exp(), Math.log()...
- Math.min(), Math.max(), Math.round(), Math.floor(), Math.ceil()...
- Math.toDegrees(), Math.toRadians()...

// Square roo

double a = 3;
double b = 4;
double ¢ = Math.sqrt(a * a + b * b);

System.out.println("c: " + c);

coligny@marvin-13:~/workspace/trainingDir$ java training.PrimitiveTypes
c: 5.0

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

17
Java training > Bases

Arrays AN A P

- set of elements of same type (array of ‘int’, array of ‘double’,...) designated by a unique name
- 1, 2 or more dimensions

- managed by references

- memory allocation: with the new keyword

- null if not initialised

- can not be resized

- access elements with the [] operator

- indices begin at 0

- size: myArray.length

. . R ‘null ‘null ‘null ‘null ‘null ‘null ‘null ‘null ‘null ‘null ‘null ‘Bob ‘
String[] a = new String[12];

al[ll] = "Bob";

‘ Jack ‘ William ‘ Joe
String[] b = {"Jack", "William", "Joe"};////’//’//////‘

/’O o lofo .. 2dimensions

int size = 4; ’
double[] ¢ = new double[size]; »
double[][] d = new double[4][6]; _ SR S
d[0][2] = 3d ; 0 0 0 3 0 0 0
d[3][5] = 1d ; 1 |le |8 |e |e |e |e

. 2 [¢] (0] [¢] (0] 0] [¢]
// Index error: max is d[3][5]
System.out.println (d[4][6]); S L O S A R b

\\E‘\
Exception in thread "main” java.lang.ArraylndexOutOfBoundsException: 4
at training.Training.main(Training.java:31) e a runtime exception

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java training > Bases

Conditions: if, else if, else

Tests a simple condition

- can be combined

// Simple if
if (i == 10) {

// do something
}

// Complex if

if (count < 50) {
// do something

} else if (count > 50) {
// do something else

} else {
// count == 50

}

// Boolean expression
if (index >= 5 && !found) {
System.out.println ("Could not find in 5 times");

}

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

18

AMAP

Java training > Bases

Loops: while, do... while

Loop with condition
- while (condition) {...}

- do {...} while (condition);

while: condition is tested first

int count = 0;

test is at the end

do... while: condition is tested at the end

- always at least one iteration

int count = 0;

while (count < 10) { do {
count++; count++;
Same } while (count < 10);
results
System.out.println ("count: " + count); System.out.println ("count: " + count);
count: 10 count: 10
int count = 10; int count = 10;
while (count < 10) { do {
Different count++; count++;
results } while (count < 10);
System.out.println ("count: " + count); System.out.println ("count: " + count);
count: 10 count: 11

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java training > Bases

Loops: for

Loop a number of times

- for (initialisation; stop condition; advance code) {...}

// With an array from O to 11
int[] t = new int[12];
int sum = 0; 7/////////////
for (int i = 0; i < t.length; i++) {
t[i] = 1i;
sum += t[i];
}

LN]
~
~~'..
~
~,,

%~ sum: 66

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java training > Bases

Loops: continue or break

// Search an array from 0 to 11
int[] t = new int[12];

int sum = 0;

int i = 0;

for (i = 0; i < t.length; i++) {
if (t[i] == 0) continue;
sum += t[i];
if (sum > 50) break;

}

System.out.println ("i: " + i +" sum: " + sum);

i: 10 sum: 55

- an internal continue jumps to the next iteration
- an internal break gets out of the loop

- for all kinds of loops (for, while, do while)

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java training > Bases

Runtime exceptions

Something wrong during the execution

- could not be checked at compilation time

- e.g. try to access an element outside the bounds of an array
- java.lang.ArraylndexOutOfBoundsException

- e.g. try to use an array that was not initialised
- java.lang.NullPointerException

- e.g. try to read a file that could not be found
- java.io.FileNotFoundException

- exceptions stop the program if not managed...

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java training > Bases

Exceptions management a‘ﬁ'p

Exceptions can be managed everywhere
- use a try / catch statement

this file does not exist

-1- this code raises an exception

String fileName = "wrongName";
try {
BufferedReader in = new BufferedReader (new FileReader (fileName));
: String str;
-2- this code while ((str = in.readLine ()) '= null) {
is skipped //process (str);
}
in.close();
} catch (Exception e) {4
//////, System.out.println ("Trouble: " + e);
} ‘\
-3- the catch -4- the trouble is reported
clause is evaluated catch should never be empty!

Trouble: java.io.FileNotFoundException: wrongName (No such file or directory)

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java training > Object oriented programming

Object oriented programming (O.0O.P.)

Java is an object oriented language...

- encapsulation - static variable and method
- vocabulary - interface

- class - abstract class

- properties - the 'Object’ superclass

- constructor - enums

- instance(s) - polymorphism

- method - cast using the ‘instanceof’ operator
- calling methods - packages and import

- memory management - lifetime of variables

- inheritance - Java reserved keywords

- specific references - Java modifiers

- constructors chaining
- method overloading / overriding

Not presented here:

- static initializer
- nested class

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

25

Java training > Object oriented programming

Introduction to object oriented programming (O.0.P.) AN P

- The O.0.P.:
- Is based on structured programming
- contributes to the reliability of softwares

- makes it easy to reuse existing codes
- introduces new concepts: object, encapsulation, class, inheritance

- In O0.0.P. a program implements different objects (= a software brick).

- Different kinds of objects:

\ /4/ 4/4, v,

3o Pl

/S

a list of trees (‘organizational’ object) \

a tree 3D viewer (‘graphical’ object)

a tree (‘physical’ object)

and many others...

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java training > Object oriented programming

Encapsulation

Bundle data and methods operating on these data in a unique container:

— the object

Hide the implementation details to the users (developers) of the object, they only know
its 'interface’ (interface = the functions that one wishes to show to the user)

package training;

/** A simple tree
3
public class Tree {

// diameter at breast height, cm
private double dbh;

public Tree () {}

public void setDbh (double d) {
dbh = d;
}

public double getDbh () {
return dbh;

} _

T r/ data

methods operating on

/ these data

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java training > Object oriented programming

Vocabulary a‘m% p

Class
- a class = a new data type - generalization of the concept of simple type

(example: Tree)
- source files describe classes
Object , , ,
- instance of a class at runtime /
- memory allocation
- several objects may be built with the same class (example: 3 instances of Tree class)

Instance variable (iv)
- variables of an object (example: dbh)
- (field, attribute, member data)

Method
- function of an object (example: setDbh(), getDbh())
- (procedure, member function)

Property
- instance variable or method

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java training > Object oriented programming

Class

package training;

/** A simple tree
W
class — ¢ public class Tree {
// diameter at breast height, cm
instance variable —— e private double dbh;

public Tree () {}

//////////. public void setDbh (double d) {
% " dbh = d;
\\\\\\\\\\\. }

public double getDbh () {

return dbh;
}

methods

A class is a new data type
e.g. int, double, float, boolean, String, Tree...

Scope modifiers for the properties

- public . visible by all (interface)
- protected : visible in the package (and in later seen subclasses...)
- private . scope is limited to the class (hidden to the others)

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java training > Object oriented programming

Properties

Instance variable

private double dbh;

_ TN

scope modifier type name

Method

scope modifier

N

public void setDbh (double d) {

}

return type name parameters scope modifier return type

I N

dbh = d; return dbh;

name

no parameter

[

public double getDbh (

.\\\\\\\ } .\\\\
body body

\
. Arule: |

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java training > Object oriented programming

Method

Classes contain instance variables and methods

- a class can contain several methods
- if no parameter, use ()
- if no return type, use void

package training;

/** A simple tree
3

public class Tree {
// diameter at breast height, cm
private double dbh;

constructors are particular
methods without a return type

public Tree () {}

setDbh () method: 1 parameter
public void setDbh (double d) { setSomething () is a mutator
dbh = d;
}

public double getDbh () { o~"\‘M‘\"\“‘\“‘\“‘\“‘\“‘\“‘\
return dbh; getSomething () is an accessor

} returns something

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java training > Object oriented programming

Constructor

- particular method called at object creation time

- same name than the class (starts with an uppercase letter)
- ho return type
- deals with instance variables initialisation

- several constructors may coexist if they have different number and/or types of parameters

package training;

/**
*/

A simple tree

public class Tree {

// diameter at breast height, cm
private double dbh;

public Tree () {}

public Tree (double d) {

}

dbh = d;

a default constructor (no parameter)

another constructor (takes a parameter)

regular method with a parameter

public void setDbh (double d) {

}

dbh = d;

public double getDbh () {

}

return dbh;

An introduction to Java -

Notes:
- this default constructor does nothing particular
- ‘dbh’ is a numeric instance variable
- set to 0 automatically
- the other constructor initializes ‘dbh’

F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java training > Object oriented programming

Instance Vocabulary:

object = instance

Vocabulary:
the properties of the object
Instanciation the properties of the class
- creates an instance of a given class ~ Instance variables + methods

- I.e. an object

-1- declaration of a reference \. // make an instance of Tree
type + name Tree t;

no object created yet t = new Tree (); 0\
-2- creation of the object

// same than . .
Tree © = oy Tree ()0 new - instanciation
class name = constructor name

What happens in memory

- hew - instanciation = memory reservation for the instance variables (ivs) + the methods
- the constructor is called (initialisations)

- returns a reference to the created object (a reference contains the address of an object)
- we assign it to the reference named 't'

Tree
methods

| ivs |
/ } ~ a Tree object in memory:

| | instance variables + methods

a reference
to use the object

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java training > Object oriented programming

Instances

Creation of several objects

// Create 2 trees . .
Tree t1 = new Tree (); &« 2times new - 2 objects

Tree t2

new Tree ();

What happens in memory

- 2 times ‘new’: 2 memory reservations for the instance variables of the 2 objects (their ‘dbh’
may be different)

- the constructor is called for each object

- the methods of the 2 objects are shared in memory

- each ‘new’ returns a reference to the corresponding object

- we assign them to 2 different references named 't1' and 't2'

Tree
v methods
t1 —p»| Tree
ivs
t2 —p»| Tree
2 references 1vs

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java training > Object oriented programming

Instances

Using the references

// Create 2 trees
Tree t1 = new Tree ();

Tree t2 = new Tree ();

t1 —p»| Tree
ivs
t2 ——p»| Tree
ivs

Tree
v methods

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

t2 = t1;
t1 —p»| Tree
4 ivs
t2 / Tree
ivs

- both ‘t1’ and ‘t2’ point to the first tree

Tree
v methods

- the second tree is 'lost'

tl = null;
t1 Tree
ivs
t2 ——p| Tree
ivs

Tree
v methods

- ‘t1’ points to nothing
- 12’ points to the second Tree
- the first Tree is 'lost'

Java training > Object oriented programming

Calling methods

Definition of Tree class
(Tree.java file)

package training;

/*¥* A simple tree
3

public class Tree {
// diameter at breast height, cm
private double dbh;

public Tree () {}

public void setDbh (double d) {
dbh = d;

}

public double getDbh () {
return dbh;

}

Method returning nothing (void)
reference.method (parameters);

Method returning something

Use of Tree class
(Training.java file)

// Create a tree
Tree t1 = new Tree ();

// Set its diameter
tl.setDbh (12.5);

// Print the diameter
double d1 = tl.getDbh ();

System.out.println ("tl dbh: " + dl);

’
[
1
!

System is a class

out is a static public variable of type PrintStream

println () is a method of PrintStream

writing in out writes on the 'standard output’

returnType variable = reference.method (parameters);

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

36

Java training > Object oriented programming

Memory management n*nn&.np

- objects are instantiated with the keyword new — memory allocation
- objects are destroyed when there is no more reference on them - garbage collecting
- this process is automatic

- to help remove a big object from memory, set all references to null

// Declare two references
Tree tl1 = null; e — no object created yet

// Create an object (instanciation)
tl = new Tree ();

// The object can be used
double v = tl.getDbh ();

// Set reference to null
tl = null;

the object will be destroyed by the garbage collector

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java training > Object oriented programming UML notati
notation

Inheritance Tree

How to create a spatialized tree ?

Simple manner results in duplicates...
package training;
/*¥* A tree with coordinates

W
public class SpatializedTree {

| // diameter at breast height, cm

package training; ' private double dbh;

// X, y of the base of the trunk (m)

/** A simple tree private double x;

*/ N
te double y;

public class Tree { private doubte y

// diameter at breast hei , €m ** Default 1 t

private double dbh; /*/ erautt constructor

. ublic SpatializedTree () {
public Tree () {} S O
}

public void setDbh (double d) {@. -~
dbh = d; .\\\\\\\\\\\\\\\\\'public void setDbh (double d) {
¥ . dbh = d;

SpatializedTree

public double getDbh () { L} ffffffffffffffffffffffff
return dbh; \fpumudoubxegetomn{ ******
¥ . return dbh;
} oo
]] publ@c void setXY (double x, double y) {
Tree.java file this.x = x;
- this.y = vy;
}
public double getX () {return x;}
public double getY () {return y;}
No scalable and no maintainable }

SpatializedTree.java file

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

37

AMAP

38

) UML notation Tree *&
Inheritance fﬁ AMAP

Java training > Object oriented programming

. SpatializedTree
Reuse a class to make more specific classes

- .. a tree with coordinates a spatialized tree is a tree (with coordinates)
- inheritance corresponds to a'is a' relation -

- a subclass has all the instance variables and methods of its parent: the superclass

- all classes inherit from the Object class

- multiple inheritance is not allowed in Java

ackage training; superclass
k s 2 package training; subclass
/** A simple tree]]
* / /** A tree with coordinates inheritance keyword
public class Tree { */ _
// diameter at breast height, cm public class SpatializedTree extends Tree {
private double dbh; // x, y of the base of the trunk (m)
private double x;
public void setDbh (double d) { /Ij Default constructor
dbh = d; : o
} public S?Z;\tlallzedTree () { calls constructor of
super {); & ————————— " the superclass
public double getDbh () { setXYy (0, 0);
return dbh; }
} - c “‘j
public void setXY (double x, double y) {
} this.x = x;
. : this.y = y;
Tree.java file } ¢ — new methods
o public double getX () {return x;}
// SpatializedTree public double getY () {return y;}
SpatializedTree t3 = new SpatializedTree (); B
}

t3.setDbh (15.5);
t3.setXY (1, 5);

SpatializedTree.java file

double d
double x

t3.getbbh (); // 15.5
t3.getX (); // 1

inherited methods

Training.java file An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java training > Object oriented programming

Specific references

A keyword for the reference to the current class: this

- to remove ambiguities

A keyword for the reference to the superclass: super

package training;

/** A tree with coordinates
*/

public class SpatializedTree extends Tree {
// X, y of the base of the trunk (m)

call to the private double x; e —
constructor of the private double y;
superclass
/** Default constructor
*/
public SpatializedTree () {
super ();
setXYy (0, 0);
}
public void setXY (double x, double y) {

U}
this.x = x;
this.y = vy;
}

public double getX () {return x;}
public double getY () {return y;}

instance variable: this.x

a parameter

no ambiguity here

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

39

AMAP

Java training > Object oriented programming

Constructors chaining

Chain the constructors to avoid duplication of code

public Tree () {} superclass
¥ 4
K4
/ Tree.java file
!
I
! : - subclass
\ /** Constructor with a location
" */
\\, public SpatializedTree (double x, double y) {
~ .
+: super (); -
setXY (x, y); s
} s,
I\\
/** Default constructor \
*/ <
public SpatializedTree () { —,'
thiS (G, G); ll---ll_--“
}

SpatializedTree.java file

new Tree ();
// calls Tree ()

new SpatializedTree (1, 5);
// calls SpatializedTree (x, y)
// calls Tree ()

new SpatializedTree ();

// calls SpatializedTree ()

// calls SpatializedTree (x, Yy)
// calls Tree ()

Training.java file

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

40

Java training > Object oriented programming

Method overloading / overriding

Overload (“surcharge”)

- in the same class

- several methods with same name

and

- different types of parameters and/or
a different number of parameters

Override (“redéfinition”)
- in a class and a subclass
- several methods with:

same signature i.e. same name and

same types of parameters in the
same order

and
same type of return value (or a
derivated type since JDK 5.0)

BiomassCalculator

public double calculateBiomass (Tree t) {
return t.getTrunkBiomass ();

}

public double calculateBiomass (TreeWithCrown t) {
return t.getTrunkBiomass () + t.getCrownBiomass ();

}

superclass
public double getVolume () { P
return trunkVolume;
}
_ subclass
@Override

public double getVolume () {
return trunkVolume + crownVolume;

}

e.g. if TreeWithCrown extends Tree

optional:

tell the compiler
--> it will check

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java training > Object oriented programming

Static variable and method N

A common variable shared by all the instances of a class
- can be a constant: ‘Math.PI’
public static final double PI = 3.14...;

- can be a variable
public static int counter;

e.g. ‘counter’ can be incremented each time the class is instancied

A method at the class level: no access to the instance variables

- no need to instanciate a class, example: the methods of the ‘Math’ class

like ‘Math.sqrt(double a)’
- a utility method: to reuse a block of code

- uses only its parameters (and not the instance variables)

/**
* Quadratic diameter
/)
public static double calculate dg (double basalArea, int numberOfTrees) {
return Math.sqrt (basalArea / numberOfTrees * 40000d / Math.PI);

example: in class Tree

}

- ‘basalArea’ and ‘numberOfTrees’ are the parameters
- their names have a local scope: they are only available in the method

double dg = Tree.calculate dg (23.7, 1250);

ClassName.method (parameters)

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java training > Object oriented programming

UML notation Spatialized
Interface p

/
/

i i S at'él' edTree
A particular kind of class patializ

- a list of methods without a body

- a way to make sure a class implements a set of methods
- a kind of contract

- classes extend other classes

- classes implement interfaces

- implementing several interfaces is possible

public interface Spatialized {

public void setXYZ (double x, double y, double z);

public double getX () 'h‘“"“‘*‘—‘~‘-‘\—\—‘_‘h‘_‘\:::::::::: :
public double getY (); ¢ — —————————— no method body in the
()

public double getZ e Interface

.
14
’
14

/*¥* A tree with coordinates
*/
public class SpatializedTree extends Tree implements Spatialized {

public void setXYZ (double x, double y, double z) {
this.x = x; .\\\\\\\\\\\\\\\\ . s _
this ; an implementation is required

Y% Yy
for the methods in the class or

this.z Z;

} / the subclasses
public double getX () {return x;}
public double getY () {return y;}

public double getZ () {return z;}

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java training > Object oriented programming o 1
UML notation ‘L Shape | *&
Abstract class /\ AR P
Square Circle
An incomplete superclass with common methods
- class 'template’ containing abstract methods to be implemented in all subclasses
(contains at least one abstract method)
- can also have regular methods (unlike an interface)
- each subclass implements the abstract methods
- can not be instanciated dlrectly an abstract class (at least one abstract method):
/ can not be instanciated
Shane iava public abstract class Shape {
) — private String name;
file
public String getName () {return name;}e—— a regular method
public abstract double area ();‘\ll\TE\\\\\\\\\\\\\
} an abstract method: no body
public class Square extends Shape {
private double width; // m .‘\"\\‘\‘\“““N‘\~\\~\\‘\\‘\\\
.. two subclasses:
@override they implement the abstract method
public double area () {
return width * width;
} // Example
} Shape sh = new Shape (); // ** Compilation error
Square.java file Square s = new Square (”square 1”, 10);

public class Circle extends Shape { Circle c = new Circle ("circle 17, 3);

private double radius; // m _
String namel = s.getName (); // square 1

éé&erride

Circle.java public double area () { double al = s.area (); // 100
file return Math.PI * radius * radius; double a2 = c.area (); // 28.27
- }

} Training.java file

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java training > Object oriented programming

Polymorphism

Write generic code to be executed with several types

- more abstract and general implementations

public abstract class Shape {

public abstract double area (); //

Shape.java file

public class Square extends Shape {
private double width; // m
éb&erride
public double area () {
return width * width;
}

Square.java file

public class Circle extends Shape {
private double radius; // m
éé&erride
public double area () {
return Math.PI * radius * radius;
}

Circle.java file

An introduction to Java -

private float totalArea (Shape[] a) {
double sum = 0;
for (int i = 0; i < a.length; i++) {
// the program knows what method to call
sum += al[i].area ();

}
return sum;
}

this code is generic
works with all shapes

m2

Training.java file

several classes, all Shapes

Example of use
Shape[] a = {new Square (5), new Circle (3), new Square (10)};

float total = totalArea (a);

Training.java file

F. de Coligny, N. Beudez - INRAE AMAP - January 2020

46

Java training > Object oriented programming

. UML notation Object *&
The 'Object' superclass f K3
Tree

If no 'extends' keyword...
... then the class extends Obiject

— All classes extend Object '
note: native methods have a body

in native language (e.g. C)

extends Object -> they are not abstract

Tree.java file

package training;

Object.java file

a superclass for

/** A simple tree i C
y package java.lang; all classes
public class Tree { . public class Object/{
// diameter at breast height, cm
private double dbh; public final native Class<?> getClass();
public Tree () {} public native int hashCode();
pugt%c!g%d setDbh (double d) { public boolean equals(Object obj) { all these methods can be
) ; } return (this == obj); called on all objects
public double getDbh () { protected native Object clone() throws
) return dbh; CloneNotSupportedException;
. public String toString() {
@Ovefrlde . . return getClass().getName() + "@" +
public StElng toStrlgg () {_ Integer.toHexString(hashCode()); P
s return “Tree dbh: + dbh; }
. (...)
}

Training.java file

// Tree -
Tree t = new Tree (); training.Tree@37dd7056
t.setDbh (14.5); -

System.out.println (“” f t);

toString () can be overriden V> EREECEGLIHENERS

appended to a String: for a better result

i.e. t.toString () An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java training > Object oriented programming

Enum aﬁp

Another particular kind of class: a type for enumerations

- an enum is a type with a limited number of values

Declaration

public enum Day {
SUNDAY, MONDAY, TUESDAY, WEDNESDAY,
THURSDAY, FRIDAY, SATURDAY

An example of use
private Day day;

day = Day.SUNDAY;

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java training > Object oriented programming

Cast aﬁétﬁ P

Cast of numbers

double d = 12.3;
int i = (int) d; // 12

Tree
In an inheritance graph f

SpatializedTree

- a reference can have any supertype of the real type

Tree t = new SpatializedTree ();

t —p|Spatialized
" —_ Tree

real type of the object

type of the reference

- we can only use the methods the reference knows

t.setDbh (10); // ok
t.setXY (2, 10); // ** compilation error: Tree does not define setXY ()

- to access the methods of the real type, we can create another reference

SpatializedTree s = (SpatializedTree) t; // cast: creates another reference
s.setXY (2, 1); // ok: SpatializedTree does define setXY ()

. . , t —»» Spatialized
- example of use (with the ‘instanceof’ operator) s —p| Tree

contains spatialized and List tregs = forest.getTrees(); \

non-spatialized trees
for (Object o : trees) {

. . i instanceof SpatializedTree) { same object
IRSEBECL Cp el _Checks /fgsg;alizedTree s = (SpatializedTree) o;
the type of an object / updateRectangle(s.getX(), s.getY());
}
calculates the rectangle enclosing }

the spatialized trees

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java training > Object oriented programming

Packages and import a‘ﬁ% p

Packages
- namespaces to organize the developments: groups of related classes
- first statement in the class (all lowercase)
- match directories with the same names
e.g.
- java.lang: String, Math and other basic Java classes
- java.util: List, Set... (see below)
- training: Tree and SpatializedTree
The package is part of the class name: java.lang.String, training.Tree

package training; e first instruction

Import
- to simplify notation, import classes and packages

- instead of:

training.Tree t = new training.Tree ();

write:
import training.Tree;

Tree t = new Tree ();

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

50
Java training > Object oriented programming

Lifetime of variables

AMAP

Lifetime of a variable: defined by the scope delimited by {...} in which the variable has been defined

- instance variable of a class: as long as the object it belongs is referenced

(lifetime = lifetime of the object)

package training;

/**
*/
public class Tree

// diameter at peagst height, cm
private double @

public Tree () {}

A simple tree

) o
public void setDbh (double d)~{
dbh = d;
}
public double getDblr () {
return dbh;
}
public doyble getDbhSquared () {
double“res = dbh*dbh;
retufrn res;
}

Tree.java file

dbh does not exist

// Before instanciation of ./////////

// Tree class an object of type Tree is created

and its reference is placed in t1:
Tros t1 - mew Tree () dbh (oftl) exists and is initialized
to 0.0 (default value)
// Set its diameter
tl.setDbh (12.5); e

dbh has value 12.5

// tl1 is no more referenced

tl=null; &—— = the created Tree is no more
referenced: it becomes candidate
to the garbage collector and dbh

Training.java file .
- does not exist anymore

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java training > Object oriented programming

Lifetime of variables

51

AMAP

Lifetime of a variable: defined by the scope delimited by {...} in which the variable has been defined

- argument (parameter) and local variable of a method: exist only inside the method

package training;

A
pyblic void setDbh (double(d)){ |
dbh = d;
}

public double getDbh () {
return dbh;
}

public d e getDbhSquared ()| {
double{ res) = dbh*dbh;
return res;

Tree.java file

d is an argument of the setDbh() method: d exists only inside this method

d does not exist

d exists inside the

// Create a method

Tree new Tree ();

// Set its diameter d does not exist
tl.setDbh (12.5); anymore

tl.setbbh (12.5);e¢—

// Call getDbhSquared() method
double dbhSquared = tl.getDthW

Training.java file

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java training > Object oriented programming

Lifetime of variables

52

AMAP

Lifetime of a variable: defined by the scope delimited by {...} in which the variable has been defined

- index of a loop: exists inside the loop (at least...)

i does not exist

// With an array
int[] array = new int[12]; i is created
int sum =0 ;

for (in = 0; 1 < array.length; i++)|{
array[i] = i;

sum += arrayl[i];

} i exists inside the loop

i does not exist anymore

sum has the same value with i declared before the loop:

// With an array

int[] array = new int[12];
int sum = 0 ;

int

for (1 =

i is created

0; 1 < array.length;

array[i] =i, ¢ —— | jexists inside the loop
sum += array[il];

i still exists and its value is 12

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

lifetime of i = exists only
inside the loop

lifetime of | = from its
declaration + inside the
loop + after the loop

53
Java training > Object oriented programming

Lifetime of variables a’ﬁ' b

Lifetime of a variable: defined by the scope delimited by {...} in which the variable has been defined

- local variable of a loop: exists only inside the loop

// With an array

int[] array = new int[12]; j does not exist
int sum = 0 ;
for (int i = 0; i < array.length; i++)|{

int())= 1+2; j is created

array[i] = 1i;
sum += array[i];

} j does not exist anymore

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java training > Object oriented programming

Names of variables

Use explicit names for:

- instance variables
package training;

/*¥* A simple tree
*/

public class Tree {
// diameter at

private in
private do
private Str

ble height;
ng speciesName;

public Tree () {}

54

AMAP

- local variables having a long range
package training;

/*¥* A simple tree
W

public class Tree {
// diameter at breast height, cm
private double dbh;

public Tree () {}

public ; tions () {
in€ anExplicitName;

// some long calculations...
anExplicitName = ...

anExplicitName = ...

Short names are authorized for variables having a short range:

// With an array

int[] array = new int[12];

int sum =0 ;

for (int(;)= 0; i < array.length; i++) {
array[1i] = 1i;
sum += arrayl[i];

}

only 3 lines

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java training > Object oriented programming

Java reserved keywords

abstract
boolean
break
byte
case
cast
catch
char
class
const
continue
default
do
double
else
enum
extends
false
final
finally

float

for

goto (unused)
if
implements
import
instanceof
int
interface
long
native

new

null
package
private
protected
public
return
short
static

super
switch
synchronized
this

throw
throws
transient
true

try

void
volatile
while

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java training > Object oriented programming

Java modifiers ;ﬁ% A

a final field cannot be changed e.g. Math.PI

a final class can not be subclassed e.g. java.lang.String a final method can not be overriden

class interface field/ method/ initializer variable

abstract X X X

final X X X X
native X

none (package) X X X X

private X X

protected X X

public X X X X

static X X X X
synchronized X

transient X

volatile X

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java training > Resources

Resources

- a focus on the collection framework
- the Collection interface

- ArrayList

- HashSet

- Map

- the tools in the Collections class

- how to iterate on objects in collections
- how to iterate on objects in maps

- collections and generics

- online documentation

- online documentation: javadoc

- online documentation: tutorials

- links to go further

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java training > Resources

A focus on the collection framework a‘ﬁ%‘ b

A collection is like an array, but without a size limitation (size can vary during execution)

- contains references

- may have distinctive features
- a list keeps insertion order

- a set contains no duplicates and has no order

- the 8 simple types (int, double, boolean...) are not objects — need a wrapper object
Byte, Short, Integer, Long, Float, Double, Character, Boolean
Java helps: Integer i = 12; (autoboxing / unboxing)

- all collections implement the Collection interface

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java training > Resources

The Collection interface

Implemented by all collections

public
public

public
public

public
public

boolean add (Object o0);
boolean remove (Object o0);

void clear ();
boolean isEmpty ();

int size ();
boolean contains (Object o0);

//
//

//
//

//
//

59

AMAP

adds o
removes o

removes all objects
true if the collection is empty

number of objects in the collection
true if o is in the collection

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java training > Resources

60

l\fl?i)[LJESt AMAP
******** 1
| Collection
r— li?
\ List :
v _
- implements the List interface
- keeps insertion order
- accepts duplicates
- specific methods added
public void add (int index, Object o); // adds o at the given index (shifts subsequent elements)
public Object get (int index); // returns the object at the given index
public int index0f (Object o); // returns the index of o

public Object remove (int index); // removes the object at the given index

List 1 = new ArrayList ();

l.add ("Robert"); // add () comes from Collection

l.add ("Brad");
l.add ("Robert");

int n = l.size (); // 3
String s = (String) l.get (0); //

"Robert"

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java training > Resources

HashSet
| Collection
r *x **** 7
| Set j
,,,,,,,, ‘Ei
HashSet H\ashSet

- implements the Set interface
- does not keep insertion order
- does not accept duplicates

Set s = new HashSet ();

s.add ("one"
s.add ("two"
s.add ("one"

);
);
); // duplicate, ignored
int n = s.size (); // 2

if (s.contains ("one"))... // true
if (s.contains ("three"))... // false

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java training > Resources

Maps

—_--—

A Map associates a key with a value
- the common Map implementation is HashMap

HashMap

- keys must be unique (like in a Set)
- keys and values are references

Map m = new HashMap ();

m.put ("Red", new Color (1, 0, 0Q));

m.put ("Green", new Color (0, 1, 0));

m.put ("Blue", new Color (0, 0, 1));

Color ¢ = (Color) m.get ("Red"); // returns a color object

if (m.containsKey ("Blue"))... // true

Set s = m.keySet (); // set of keys: Red, Green, Blue

keys | values
"Red"|w—@ ® —» Color (1, 0, 0)
"Green'"|l«¢ @ ® —»|Color (0, 1, 0)
"Blue"l-¢——@ ® —»|Color (0, 0, 1)

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java training > Resources

The tools in the Collections class

Tools for the collections are proposed in a class: Collections

publlc‘statlc final List EMPTY LISEH////’/’”’/’///////’A empty collections and maps
public: stat1c final Set EMPTY SET
pub11c stat1c final Map EMPTY MAP

PUbllczstatlc‘v01d sort(List list) '/’W//i##,//,,#/,,/ sorting

public}static‘void sort(List list, Comparator c)

public staticlvoid shuffle(List list), | changingelements order

public}static void reverse(List list)

public: stat1c‘0b]ect min(Collection coll)
public| statlc Object max(Collection coll)

// Random order
Collections.shuffle (list);

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

63

Java training > Resources

How to iterate on objects in collections

Two syntaxes to loop on a list

// List of Tree

List 1 = new ArraylList (li/,///////,,/////consnucurtakesackm
l.add (new Tree (5.5));

l.add (new Tree (2.3));

1.add (new Tree (4 1)) 7 an lterator + a cast

// Loop with an Iterator
for (Iterator i = l.iterator (); i.hasNext ();) {
Tree t = (Tree) i.next ();

if (t.getDbh () < 3) {i.remove ();}

.\ the iterator can remove the
} current element from the list

a cast is needed at iteration time // Loop with a foreach
\\\\\\\\\\\\\\\\\\\\\\\\jor (Object o : 1) {
Tree t = (Tree) o;

t.setDbh (t.getDbh () * 1.1);
}

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

64

AMAP

Java training > Resources

How to iterate on objects in maps

Map m = new HashMap ();
m.put ("Red", new Color (1, 0, 0));
m.put ("Green", new Color (0, 1, 0));

m.put ("Blue", new Color (0, O, 1)):///////////////////Heﬁﬂeonkeys
for (Object o : m.keySet ()) {

ErE:

} / iterate on values
for (Object o : m.values ()) {

- Lo = ..

ErE:

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

65

Java training > Resources

Collections and generics

Collections are manipulated by generic classes that
implement Collection<E>

E represents the type of the elements of the collection

// List of Tree

List<Tree> 1 = new ArraylList<Tree> ();
l.add (new Tree (1.1));

l.add (new Tree (2.5));

l.add (new Tree (3.4));

// Simplified foreach, no cast needed
for (Tree t : 1) {

t.setDbh (t.getDbh () * 1.1);

// Print the result
for (Tree t : 1) {

ArrayList<E>

.//////////‘Ionger:specﬁytype

.////////// shorter: no cast

System.out.println ("Tree dbh: " + t.getDbh ());

}

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java training > Resources

Online documentation

What's New Q

+ Documentation
Updates
+ |DK 8 Release Notes

Tutorials and Training 'E

+ The |ava Tutorials

W

+ Java SE 8 Names and

+ Java Training

More Information

Version Numbers

« Java SE White Papers

« Documentation
Accessibility

+ Specifications

« Installation
Instructions

+ Certified System
Configurations

« Compatibility Guide

+ Known Issues

+ |DK 8 Adoption Guide

« Troubleshooting
Guide

+ About Test / Sample
Applications and Code

WV

« Java SE Downloads

Downloads

+ |DK 8 Documentation

Oracle has two products that implement Java Platform Standard Edition (Java SE) 8: Java SE Development Kit (JDK) 8 and Java SE Runtime Environment (JRE] 8.

JDK Bis a superset of JRE 8, and contains everything that is in JRE 8, plus tools such as the compilers and debuggers necessary for developing applets and applications. JRE 8 provides the
libraries, the Java Virtual Machine (JVIM), and other components to run applets and applications written in the Java programming language. Mote that the JRE includes components not
required by the Java SE specification, including both standard and non-standard Java components.

http://download.oracle.com/javase/8/docs/

Java Platform Standard Edition 8 Documentation

The following conceptual diagram illustrates the components of Oracle's Java SE products:

Description of Java Conceptual Diagram

Jdava Language

Tools &
Tool APIs

=
=

Y
i

JRE

lamg _and wtil
Base Libraries

Logging Management

Instrumentation Concurrency Utilities
Versioning Preferences API JAR

Java HotSpot Client and Server VM

zip

Profiles

3
f

=
ke

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java training > Resources

Online documentation: javad oC http://download.oracle.com/javase/8/docs/api/ Aﬁ P

™ Java™ Platform
J:t‘;:da'::fg:'g‘ OVERVIEW PACKAGE USE TREE DEPRECATED INDEX HELP e

All Classes All Profiles PREV CLASS NEXT CLASS FRAMES NO FRAMES

Packages SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.applet compactl, compact2, compact3

java.awt java.lang

java.awt.color .

java.awt.datatransfer Class ObJECt

java.awt.dnd . .

java.awt.event java.lang.Object

java.awt.font

java.awt.geom

java.awt.im public class Object

java.awt.im.spi i _)
java.awt.image Class Object is the root of the class hierarchy. Every class has Object as a superclass. All objects, including arrays, implement the methods of this class.
iava.awt.imane renderahle Since:

NullType JDK1.0

Number See Also:

NumberFormat ee Also:

NumberFormat.Field Class

NumberFormatException

NumberFormatProvider

NumberFormatter Constructor Summary

NumberOfDocuments

NumberOfinterveningjobs _

NumberUp

NumberUpSupported Constructor and Description

NumericShaper

NumericShaper.Range Object()

NWVList

OAEPParameterSpec

OBJ_ADAPTER Method Summary

ObjDoubleConsumer

Object

Object _ Instance Methods | Concrete Methods

OBJECT_NOT_EXIST

ObjectAlreadyActive Modifier and Type Method and Description
ObjectalreadyActiveHel .

Obiitchr:giucsfl:sere per protected Object clone()

ObjectFactory Creates and returns a copy of this object.
ObjectFactoryBuilder

ObfectHeIperry boolean equals(Object obj)

ObjectHolder Indicates whether some other object is "equal to" this one.
ObjectldHelper i . .

ObjectidHelper protected void finalize()

Objectimpl Called by the garbage collector on an object when garbage collection determines that there are no more references to the object.
Objectimpl

Objectinput Class<?> getClass()

ObjectinputStream Returns the runtime class of this Object.
ObjectinputStream.GetField .

ObjectinputValidation int hashCode()

Objectinstance Returns a hash code value for the object.
ObjectName

ObjectNotActive void notify()

ObjectNotActiveHelper Wakes up a single thread that is waiting on this object's monitor.

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java training > Resources

Online documentation: tutorials

The Java™ Tutorials

http://docs.oracle.com/javase/tutorial/

AMAP

[search the online Java Tutor

The Java Tutorials have been written for JOK 8. Examples and practices described in this page don't take advantage of improvements introduced in later releases and might use technology no longer available.
See JDK Release Notes for information about new features, enhancements, and removed or deprecated options for all JDK releases.

The Java Tutorials are practical guides for programmers who want to use the Java programming language to create applications. They include hundreds of complete, working examples, and dozens of lessons. Groups of related lessons are

organized into "trails”.

Trails Covering the Basics

These trails are available in book form as The Java Tutorial, Sixth Edition. To buy this book, refer to the box to the right.

»

W

Getting Started — An introduction to Java technology and lessons on installing Java development software and using it to create a simple program.
Learning the Java Language — Lessons describing the essential concepts and features of the Java Programming Language.

Essential Java Classes — Lessons on exceptions, basic inputfoutput, concurrency, regular expressions, and the platform environment.

Collections — Lessons on using and extending the Java Collections Framework.

Date-Time APls — How to use the java.time pages to write date and time code.

Deployment — How to package applications and applets using JAR files, and deploy them using Java Web Start and Java Plug-in.

Preparation for Java Programming Language Certification — List of available training and tutorial resources.

Creating Graphical User Interfaces

W

»

Creating a GUI with Swing — A comprehensive introduction to GUI creation on the Java platform.
Creating a JavaFX GUI — A collection of JavaFX tutorials.

Specialized Trails and Lessons

These trails and lessons are only available as web pages.

Custom Networking — An introduction to the Java platform's powerful networking features.
The Extension Mechanism — How to make custom APls available to all applications running on the Java platform.
Full-Screen Exclusive Mode APl — How to write applications that more fully utilize the user's graphics hardware.

Generics — An enhancement to the type system that supports operations on objects of various types while providing compile-time type safety. Note that this lesson is for advanced users. The Java Language ftrail contains a Generics

lesson that is suitable for beginners.

Internationalization — An introduction to designing software so that it can be easily adapted (localized) to various languages and regions.
JavaBeans — The Java platform’s companent technology.

JDBC Database Access — Introduces an API for connectivity between the Java applications and a wide range of databases and data sources.
JMX— Java Management Extensions provides a standard way of managing resources such as applications, devices, and services.
JNDI— Java Naming and Directory Interface enables accessing the Maming and Directory Service such as DNS and LDAP.

JAXP — Introduces the Java API for XML Processing (JAXP) technology.

JAXB — Introduces the Java architecture for XML Binding (JAXB) technology.

RMI — The Remote Method Invocation API allows an object to invoke methods of an object running on another Java Virtual Machine.
Reflection — An API that represents ("reflects”) the classes, interfaces, and objects in the current Java Virtual Machine.

Security — Java platform features that help protect applications from malicious software.

Sound — An AP for playing sound data from applications.

2D Graphics — How to display and print 2D graphics in applications.

Sockets Direct Protocol — How to enable the Sockets Direct Protocol to take advantage of InfiniBand.

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java training > Resources

Links to go further a‘ﬁ% p

Oracle and Sun’s tutorials
http://docs.oracle.com/javase/tutorial/
see the 'Getting Started' section

Learning the Java language
http://docs.oracle.com/javase/tutorial/java/index.htmi
https://openclassrooms.com/fr/courses/26832-apprenez-a-programmer-en-java

Coding conventions
http://www.oracle.com/technetwork/java/codeconvtoc-136057.html

Resources on the Capsis web site
http://capsis.cirad.fr

Learn to program in Java: Openclassroom web site
https://openclassrooms.com/fr/courses/26832-apprenez-a-programmer-en-java

Millions of books... including these references

“Java In A Nutshell”, David Flanagan - O'Reilly (several editions)
“Programmer en Java”, Claude Delannoy - Eyrolles

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67
	Diapo 68
	Diapo 69
	Diapo 70

