
1

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java training

An introduction to Java

François de Coligny – Nicolas Beudez

INRAE - UMR AMAP
botAny and Modelling of Plant Architecture and vegetation

January 2020

2

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java training - Contents
Java training > Contents

Introduction

- history
- specificities
- programming environment
- installation

Bases

Object oriented programming (O.O.P.)

Resources

3

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

History

James Gosling and Sun Microsystems

- Java: May 20, 1995

- Java 1 → Java 8 (i.e. 1.8), March 2014

- Oracle since 2010

Java training > Introduction

4

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Specificities

Java is an object oriented language

- clean, simple and powerful

- Java: compiled and interpreted language

- static typing (checks during compilation)

- simpler than C++ (automatic memory management, no pointers, no headers...)

Java training > Introduction

Java is portable (Linux, Windows, macOS):
"write once, run everywhere" (no recompilation is needed)

object = a software brick (see later)

Java source
code

 bytecodecompiler
(Linux, Windows, macOS)

- bytecode is not machine code
- compilation on Linux, Windows or macOS: produces same bytecode

interpreter: Java Virtual
Machine (JVM)

(Linux, Windows, macOS)

input data

output data

5

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Programming environment
Java training > Introduction

Java environment

- JRE (Java Runtime Environment)

- JDK (Java Development Kit)

Several versions

- Jave SE (Standard Edition)

- Java EE (Enterprise Edition → Web)

- Java ME (Micro Edition)

Editors

- simple editors: Notepad++ (Windows), TextPad (Windows), SciTE (multi-platform),

 gedit (multi-platform) → syntax coloring...

- IDEs (Integrated Development Environment):

Eclipse (multi-platform) → completion, refactoring...

JRE + the ‘javac’ compiler + ...

contains the ‘java’ interpreter:
JVM (Java Virtual Machine)

6

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Installation

Windows / Linux

- download and install the JDK (Java SE 8)

- modify the PATH environment variable

add the java/bin/ directory (contains javac and java programs) at the beginning of

the PATH variable

e.g. C:/Program Files/Java/jdk1.8.0_102/bin (Windows)

/home/beudez/applications/jdk1.8.0_102/bin (Linux)

- install text editor:

TextPad or Notepad++ (Windows)

gedit, SciTE (multi-platform)

Check the installation

- in a terminal: javac -version and java -version

Java training > Introduction

7

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Bases
Java training > Bases

- a Java application

- the development process

- variables, simple types

- arithmetic operators

- boolean operators

- mathematical tools

- arrays

- conditions: if, else if, else

- loops: while, do... while

- loops: for

- loops: continue or break

- runtime exceptions

- exceptions management

8

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

A Java application
Java training > Bases

package training;

/** Training application
 */
public class Training {

 /** Main method
 */
 static public void main (String[] args) {
 // Prints to screen
 System.out.println ("The Java training exercices");
 }

}

this package is a namespace,
matches a directory with same name
→ training/Training.java

a public class: class name = filename (Training.java)comments

the application entry point

prints to screen

instructions terminated by ';'

9

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

A Java application
Java training > Bases

- Java programs are written with a text editor in files with a '.java' extension: sources files

- applications are .java files with a public static void main(...) {...} method

10

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

A Java application

- to compile a Java application, use the javac compiler (part of the JDK) in a terminal

- returns a Java bytecode file: Training.class

Java training > Bases

11

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

A Java application

- to run a Java application, use the java interpreter (or Java Virtual Machine, JVM) in a terminal

Java training > Bases

the result

12

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

compilation errors

The development process
Java training > Bases

create / modify source code

source code (.java)

compile source code (with javac)

bytecode (.class)

run bytecode (with java)

result

runtime errors /
incorrect result

errors fixed, result is correct

13

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

int i = 0;
double a = 5.3;
boolean found = false;
char letter = 'z';

String name = "Robert";

Variables, simple types
Java training > Bases

Variable

- a variable has a type and holds a value

- a variable name starts with a lowercase letter (convention), e.g. myVariable

Declaration

not a simple type (seen later)

value assignment

Type Size (bits) Minimum value Maximum value Example

byte 8 -128 (= -28/2) 127 (= 2⁸/2-1) byte b = 65;

short 16 -32 768 (= -216/2) 32 767 (= 216/2-1) short s = 65;

int 32 -2 147 483 648 (= -232/2) -2 147 483 647 (= 232/2-1) int i = 65;

long 64
-9 223 372 036 854 775 808

(= -264/2)
9 223 372 036 854 775 807

(= 264/2-1)
long l = 65L;

Integer
types:

Type Size (bits) Absolute minimum value Absolute maximum value Example

float 32 1.40239846 x 10-45 3.40282347 x 1038 float f = 65f;

double 64 4.9406564584124654 x 10-324 1.797693134862316 x 10308 double d = 65.55;

Floating
types:

Character:
Type Size (bits) Example

char 16 char c = 'A';

Boolean: Type Size (bits) Example

boolean 1 boolean b = true;

14

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

double r = 3d / 2d;
double s = 3 / 2;

System.out.println ("r: "+ r + " s: " + s);

Arithmetic operators
Java training > Bases

Arithmetic

- simple: +, -, *, /, %

- increment / decrement: ++, --

- combined: +=, -=, *=, /=

- precedence with parentheses

- comparison: <, <=, >, >=, ==, !=

Beware of the int division

Caution

index = index + 2;

index += 2;

i++;

(a + b) * c;

String concatenation:
“a string” + something turns something into a String
and appends it

(same as: i = i+1;)

(same as: index = index+2;)

15

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Boolean operators
Java training > Bases

Boolean variables are true or false boolean v = true;

boolean found = isFileInSystem("trees.txt");
if (found) {
 readFile("trees.txt");
}

(a<b) && (c<d)

is true if the two expressions a<b and c<d are both true, is false otherwise

(a<b) || (c<d)

is true if at least one of the two expressions a<b and c<d is true, is false otherwise

!(a<b)

is true if the expression a<b is false, is false otherwise (same value than a>=b)

Boolean calculation

- AND: &&

- inclusive OR: ||

- NOT: !

- test equality: ==

- test non equality: !=

- use () for precedence

if (found) if (found == true)

16

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Mathematical tools
Java training > Bases

Constants

- Math.PI, Math.E

Trigonometry and other operations

- Math.cos(), Math.sin(), Math.tan()...

- Math.pow(), Math.sqrt(), Math.abs(), Math.exp(), Math.log()...

- Math.min(), Math.max(), Math.round(), Math.floor(), Math.ceil()...

- Math.toDegrees(), Math.toRadians()...

// Square root
double a = 3;
double b = 4;
double c = Math.sqrt(a * a + b * b);

System.out.println("c: " + c);

17

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Arrays
Java training > Bases

- set of elements of same type (array of ‘int’, array of ‘double’,…) designated by a unique name

- 1, 2 or more dimensions

- managed by references

- memory allocation: with the new keyword

- null if not initialised

- can not be resized

- access elements with the [] operator

- indices begin at 0

- size: myArray.length

String[] a = new String[12];
a[11] = "Bob";

String[] b = {"Jack", "William", "Joe"};

int size = 4;
double[] c = new double[size];

double[][] d = new double[4][6];
d[0][2] = 3d ;
d[3][5] = 1d ;

// Index error: max is d[3][5]
System.out.println (d[4][6]);

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 4
at training.Training.main(Training.java:31)

null null null null null null null null null null null Bob

Jack William Joe

0 0 0 0

a runtime exception

0 1 2 3 4 5

0 0 0 3 0 0 0

1 0 0 0 0 0 0

2 0 0 0 0 0 0

3 0 0 0 0 0 1

2 dimensions

18

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Conditions: if, else if, else
Java training > Bases

Tests a simple condition

- can be combined

// Simple if
if (i == 10) {
 // do something
}

// Complex if
if (count < 50) {
 // do something
} else if (count > 50) {
 // do something else
} else {
 // count == 50
}

// Boolean expression
if (index >= 5 && !found) {
 System.out.println ("Could not find in 5 times");
}

19

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Loops: while, do... while
Java training > Bases

Loop with condition

- while (condition) {…}

- do {...} while (condition);

int count = 0;
while (count < 10) {
 count++;
}

System.out.println ("count: " + count);

int count = 0;
do {
 count++;
} while (count < 10);

System.out.println ("count: " + count);

while: condition is tested first do... while: condition is tested at the end
→ always at least one iteration

test is at the end

count: 10 count: 10

int count = 10;
while (count < 10) {
 count++;
}

System.out.println ("count: " + count);

int count = 10;
do {
 count++;
} while (count < 10);

System.out.println ("count: " + count);

count: 10 count: 11

Same
results

Different
results

20

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Loops: for
Java training > Bases

Loop a number of times

- for (initialisation; stop condition; advance code) {...}

// With an array
int[] t = new int[12];
int sum = 0;
for (int i = 0; i < t.length; i++) {
 t[i] = i;
 sum += t[i];
}

sum: 66

from 0 to 11

21

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Loops: continue or break
Java training > Bases

// Search an array
int[] t = new int[12];
int sum = 0;
int i = 0;

for (i = 0; i < t.length; i++) {

 if (t[i] == 0) continue;

 sum += t[i];

 if (sum > 50) break;

}
System.out.println ("i: " + i +" sum: " + sum);

- an internal continue jumps to the next iteration
- an internal break gets out of the loop

- for all kinds of loops (for, while, do while)

from 0 to 11

22

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Runtime exceptions
Java training > Bases

Something wrong during the execution

- could not be checked at compilation time

- e.g. try to access an element outside the bounds of an array

→ java.lang.ArrayIndexOutOfBoundsException

- e.g. try to use an array that was not initialised

→ java.lang.NullPointerException

- e.g. try to read a file that could not be found

→ java.io.FileNotFoundException

- exceptions stop the program if not managed...

23

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Exceptions management
Java training > Bases

Exceptions can be managed everywhere

→ use a try / catch statement

String fileName = "wrongName";

try {

 BufferedReader in = new BufferedReader (new FileReader (fileName));
 String str;
 while ((str = in.readLine ()) != null) {
 //process (str);
 }
 in.close();

} catch (Exception e) {
 System.out.println ("Trouble: " + e);
}

this file does not exist

-1- this code raises an exception

-2- this code
is skipped

-3- the catch
clause is evaluated

-4- the trouble is reported
catch should never be empty!

Trouble: java.io.FileNotFoundException: wrongName (No such file or directory)

24

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Object oriented programming (O.O.P.)
Java training > Object oriented programming

Java is an object oriented language...

- encapsulation
- vocabulary
- class
- properties
- constructor
- instance(s)
- method
- calling methods
- memory management
- inheritance
- specific references
- constructors chaining
- method overloading / overriding

- static variable and method
- interface
- abstract class
- the 'Object' superclass
- enums
- polymorphism
- cast using the ‘instanceof’ operator
- packages and import
- lifetime of variables
- Java reserved keywords
- Java modifiers

Not presented here:

- static initializer
- nested class
- ...

25

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Introduction to object oriented programming (O.O.P.)
Java training > Object oriented programming

a tree (‘physical’ object)

a list of trees (‘organizational’ object)

- In O.O.P. a program implements different objects (= a software brick).

- Different kinds of objects:

- The O.O.P.:
- is based on structured programming
- contributes to the reliability of softwares
- makes it easy to reuse existing codes
- introduces new concepts: object, encapsulation, class, inheritance

a tree 3D viewer (‘graphical’ object) and many others...

26

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Encapsulation
Java training > Object oriented programming

Bundle data and methods operating on these data in a unique container:
→ the object

Hide the implementation details to the users (developers) of the object, they only know
its 'interface' (interface = the functions that one wishes to show to the user)

package training;

/** A simple tree
 */
public class Tree {

 // diameter at breast height, cm
 private double dbh;

 public Tree () {}

 public void setDbh (double d) {
 dbh = d;
 }

 public double getDbh () {
 return dbh;
 }

}

data

methods operating on
these data

27

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Vocabulary
Java training > Object oriented programming

Class
- a class = a new data type → generalization of the concept of simple type
 (example: Tree)
- source files describe classes

Object
- instance of a class at runtime
- memory allocation
- several objects may be built with the same class (example: 3 instances of Tree class)

Instance variable (iv)
- variables of an object (example: dbh)
- (field, attribute, member data)

Method
- function of an object (example: setDbh(), getDbh())
- (procedure, member function)

Property
- instance variable or method

28

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Class
Java training > Object oriented programming

class

methods

instance variable

Scope modifiers for the properties

- public : visible by all (interface)
- protected : visible in the package (and in later seen subclasses...)
- private : scope is limited to the class (hidden to the others)

package training;

/** A simple tree
 */
public class Tree {
 // diameter at breast height, cm
 private double dbh;

 public Tree () {}

 public void setDbh (double d) {
 dbh = d;
 }

 public double getDbh () {
 return dbh;
 }

}

A class is a new data type
e.g. int, double, float, boolean, String, Tree...

29

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Properties
Java training > Object oriented programming

Instance variable

Method

private double dbh;

scope modifier type name

public void setDbh (double d) {
 dbh = d;
}

scope modifier return type name parameters

body

A rule:
parentheses after the name → it is a method

public double getDbh () {
 return dbh;
}

scope modifier name no parameter

body

return type

30

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Method
Java training > Object oriented programming

Classes contain instance variables and methods

- a class can contain several methods
- if no parameter, use ()
- if no return type, use void

setDbh () method: 1 parameter
setSomething () is a mutator

getSomething () is an accessor
returns something

constructors are particular
methods without a return type

package training;

/** A simple tree
 */
public class Tree {
 // diameter at breast height, cm
 private double dbh;

 public Tree () {}

 public void setDbh (double d) {
 dbh = d;
 }

 public double getDbh () {
 return dbh;
 }

}

31

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Constructor
Java training > Object oriented programming

- particular method called at object creation time
- same name than the class (starts with an uppercase letter)
- no return type
- deals with instance variables initialisation
- several constructors may coexist if they have different number and/or types of parameters

a default constructor (no parameter)

package training;

/** A simple tree
 */
public class Tree {
 // diameter at breast height, cm
 private double dbh;

 public Tree () {}

 public Tree (double d) {
 dbh = d;
 }

 public void setDbh (double d) {
 dbh = d;
 }

 public double getDbh () {
 return dbh;
 }

}

Notes:
- this default constructor does nothing particular
 → ‘dbh’ is a numeric instance variable
 → set to 0 automatically
- the other constructor initializes ‘dbh’

regular method with a parameter

another constructor (takes a parameter)

32

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Instance
Java training > Object oriented programming

Instanciation
- creates an instance of a given class
- i.e. an object

-1- declaration of a reference
type + name
no object created yet

-2- creation of the object
new → instanciation
class name = constructor name

What happens in memory
- new → instanciation = memory reservation for the instance variables (ivs) + the methods
- the constructor is called (initialisations)
- returns a reference to the created object (a reference contains the address of an object)
- we assign it to the reference named 't'

// make an instance of Tree
Tree t;
t = new Tree ();

// same than
Tree t = new Tree ();

Tree
ivs

Tree
methods

t

a Tree object in memory:
instance variables + methods

a reference
to use the object

Vocabulary:
the properties of the object
the properties of the class
→ instance variables + methods

Vocabulary:
object = instance

33

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Instances
Java training > Object oriented programming

Creation of several objects

Tree
ivs

Tree
methods

t1

Tree
ivs

t2

// Create 2 trees
Tree t1 = new Tree ();

Tree t2 = new Tree ();

2 times new → 2 objects

What happens in memory
- 2 times ‘new’: 2 memory reservations for the instance variables of the 2 objects (their ‘dbh’
 may be different)
- the constructor is called for each object
- the methods of the 2 objects are shared in memory
- each ‘new’ returns a reference to the corresponding object
- we assign them to 2 different references named 't1' and 't2'

2 references

34

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Instances
Java training > Object oriented programming

Using the references

// Create 2 trees
Tree t1 = new Tree ();

Tree t2 = new Tree ();

Tree
ivs

Tree
methods

t1

Tree
ivs

t2

t2 = t1;

t1 = null;

Tree
ivs

Tree
methods

t1

Tree
ivs

t2

Tree
ivs

Tree
methods

t1

Tree
ivs

t2

- both ‘t1’ and ‘t2’ point to the first tree
- the second tree is 'lost'

- ‘t1’ points to nothing
- ‘t2’ points to the second Tree
- the first Tree is 'lost'

35

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Calling methods
Java training > Object oriented programming

// Create a tree
Tree t1 = new Tree ();

// Set its diameter
t1.setDbh (12.5);

// Print the diameter
double d1 = t1.getDbh ();

System.out.println ("t1 dbh: " + d1);

package training;

/** A simple tree
 */
public class Tree {
 // diameter at breast height, cm
 private double dbh;

 public Tree () {}

 public void setDbh (double d) {
 dbh = d;
 }

 public double getDbh () {
 return dbh;
 }

}

System is a class
out is a static public variable of type PrintStream
println () is a method of PrintStream

writing in out writes on the 'standard output'

Definition of Tree class
(Tree.java file)

Use of Tree class
(Training.java file)

Method returning nothing (void)
reference.method (parameters);

Method returning something
returnType variable = reference.method (parameters);

36

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Memory management
Java training > Object oriented programming

- objects are instantiated with the keyword new → memory allocation

- objects are destroyed when there is no more reference on them → garbage collecting

- this process is automatic

- to help remove a big object from memory, set all references to null

// Declare two references
Tree t1 = null;

// Create an object (instanciation)
t1 = new Tree ();

// The object can be used
double v = t1.getDbh ();

// Set reference to null
t1 = null;

no object created yet

the object will be destroyed by the garbage collector

37

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

package training;

/** A simple tree
 */
public class Tree {
 // diameter at breast height, cm
 private double dbh;

 public Tree () {}

 public void setDbh (double d) {
 dbh = d;
 }

 public double getDbh () {
 return dbh;
 }

}

Inheritance
Java training > Object oriented programming

How to create a spatialized tree ?

Simple manner results in duplicates...

Tree

SpatializedTree

UML notation

package training;

/** A tree with coordinates
 */
public class SpatializedTree {
 // diameter at breast height, cm
 private double dbh;
 // x, y of the base of the trunk (m)
 private double x;
 private double y;

 /** Default constructor
 */
 public SpatializedTree () {
 setXY (0, 0);
 }

 public void setDbh (double d) {
 dbh = d;
 }

 public double getDbh () {
 return dbh;
 }

 public void setXY (double x, double y) {
 this.x = x;
 this.y = y;
 }

 public double getX () {return x;}
 public double getY () {return y;}

}

Tree.java file

SpatializedTree.java file

No scalable and no maintainable

38

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Inheritance
Java training > Object oriented programming

Reuse a class to make more specific classes
- e.g. a tree with coordinates
- inheritance corresponds to a 'is a' relation
- a subclass has all the instance variables and methods of its parent: the superclass
- all classes inherit from the Object class
- multiple inheritance is not allowed in Java

// SpatializedTree
SpatializedTree t3 = new SpatializedTree ();

t3.setDbh (15.5);
t3.setXY (1, 5);

double d = t3.getDbh (); // 15.5
double x = t3.getX (); // 1

package training;

/** A tree with coordinates
 */
public class SpatializedTree extends Tree {
 // x, y of the base of the trunk (m)
 private double x;
 private double y;

 /** Default constructor
 */
 public SpatializedTree () {
 super ();
 setXY (0, 0);
 }

 public void setXY (double x, double y) {
 this.x = x;
 this.y = y;
 }

 public double getX () {return x;}
 public double getY () {return y;}

}

inheritance keyword

calls constructor of
the superclass

new methods

inherited methods

a spatialized tree is a tree (with coordinates)

Tree

SpatializedTree

UML notation

package training;

/** A simple tree
 */
public class Tree {
 // diameter at breast height, cm
 private double dbh;

 public Tree () {}

 public void setDbh (double d) {
 dbh = d;
 }

 public double getDbh () {
 return dbh;
 }

}

superclass
subclass

Tree.java file

SpatializedTree.java file

Training.java file

39

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Specific references
Java training > Object oriented programming

A keyword for the reference to the current class: this

- to remove ambiguities

package training;

/** A tree with coordinates
 */
public class SpatializedTree extends Tree {
 // x, y of the base of the trunk (m)
 private double x;
 private double y;

 /** Default constructor
 */
 public SpatializedTree () {
 super ();
 setXY (0, 0);
 }

 public void setXY (double x, double y) {
 this.x = x;
 this.y = y;
 }

 public double getX () {return x;}
 public double getY () {return y;}

}

instance variable: this.x

a parameter

no ambiguity here

A keyword for the reference to the superclass: super

call to the
constructor of the
superclass

40

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Constructors chaining
Java training > Object oriented programming

Chain the constructors to avoid duplication of code

/** Constructor with a location
 */
public SpatializedTree (double x, double y) {
 super ();
 setXY (x, y);
}

/** Default constructor
 */
public SpatializedTree () {
 this (0, 0);
}

public Tree () {} superclass

subclass

new Tree ();
// calls Tree ()

new SpatializedTree (1, 5);
// calls SpatializedTree (x, y)
// calls Tree ()

new SpatializedTree ();
// calls SpatializedTree ()
// calls SpatializedTree (x, y)
// calls Tree ()

Tree.java file

Training.java file

SpatializedTree.java file

41

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

@Override
public double getVolume () {
 return trunkVolume + crownVolume;
}

Method overloading / overriding
Java training > Object oriented programming

Overload (“surcharge”)
- in the same class
- several methods with same name
and
- different types of parameters and/or
 a different number of parameters

Override (“redéfinition”)
- in a class and a subclass
- several methods with:

same signature i.e. same name and
same types of parameters in the
same order

 and
same type of return value (or a
derivated type since JDK 5.0)

public double calculateBiomass (Tree t) {
 return t.getTrunkBiomass ();
}

public double calculateBiomass (TreeWithCrown t) {
 return t.getTrunkBiomass () + t.getCrownBiomass ();
}

public double getVolume () {
 return trunkVolume;
}

superclass

BiomassCalculator

e.g. if TreeWithCrown extends Tree

optional:
tell the compiler
--> it will check

subclass

42

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Static variable and method
Java training > Object oriented programming

/**
 * Quadratic diameter
 */
public static double calculate_dg (double basalArea, int numberOfTrees) {
 return Math.sqrt (basalArea / numberOfTrees * 40000d / Math.PI);
}

A method at the class level: no access to the instance variables

- no need to instanciate a class, example: the methods of the ‘Math‘ class

 like ‘Math.sqrt(double a)’

- a utility method: to reuse a block of code

- uses only its parameters (and not the instance variables)

- ‘basalArea’ and ‘numberOfTrees’ are the parameters

- their names have a local scope: they are only available in the method

double dg = Tree.calculate_dg (23.7, 1250);

example: in class Tree

ClassName.method (parameters)

A common variable shared by all the instances of a class

- can be a constant: ‘Math.PI‘

- can be a variable

 e.g. ‘counter’ can be incremented each time the class is instancied

public static final double PI = 3.14...;

public static int counter;

43

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Interface
Java training > Object oriented programming

A particular kind of class
- a list of methods without a body
- a way to make sure a class implements a set of methods
- a kind of contract
- classes extend other classes
- classes implement interfaces
- implementing several interfaces is possible

Spatialized

SpatializedTree

UML notation

public interface Spatialized {

 public void setXYZ (double x, double y, double z);
 public double getX ();
 public double getY ();
 public double getZ ();

}

/** A tree with coordinates
 */
public class SpatializedTree extends Tree implements Spatialized {
 ...

 public void setXYZ (double x, double y, double z) {
 this.x = x;
 this.y = y;
 this.z = z;
 }

 public double getX () {return x;}
 public double getY () {return y;}
 public double getZ () {return z;}

}

no method body in the
interface

an implementation is required
for the methods in the class or
the subclasses

44

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

public class Circle extends Shape {
 private double radius; // m
 ...
 @Override
 public double area () {
 return Math.PI * radius * radius;
 }
}

public class Square extends Shape {
 private double width; // m
 ...
 @Override
 public double area () {
 return width * width;
 }
}

Abstract class
Java training > Object oriented programming

public abstract class Shape {
 private String name;
 ...
 public String getName () {return name;}
 public abstract double area (); // m2

}

An incomplete superclass with common methods

- class 'template' containing abstract methods to be implemented in all subclasses
 (contains at least one abstract method)
- can also have regular methods (unlike an interface)
- each subclass implements the abstract methods
- can not be instanciated directly

an abstract class (at least one abstract method):
can not be instanciated

a regular method

two subclasses:
they implement the abstract method

Shape

Square

UML notation

Circle

// Example
Shape sh = new Shape (); // ** Compilation error

Square s = new Square (”square 1”, 10);

Circle c = new Circle (”circle 1”, 3);

String name1 = s.getName (); // square 1

double a1 = s.area (); // 100
double a2 = c.area (); // 28.27

an abstract method: no body

Training.java file

Shape.java
file

Square.java file

Circle.java
file

45

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

public abstract class Shape {

 public abstract double area (); // m2

}

Polymorphism
Java training > Object oriented programming

Write generic code to be executed with several types

- more abstract and general implementations

private float totalArea (Shape[] a) {
 double sum = 0;
 for (int i = 0; i < a.length; i++) {

 // the program knows what method to call
 sum += a[i].area ();

 }
 return sum;
}

Shape[] a = {new Square (5), new Circle (3), new Square (10)};

float total = totalArea (a);

this code is generic
works with all shapes

Example of use

several classes, all Shapes

public class Square extends Shape {
 private double width; // m
 ...
 @Override
 public double area () {
 return width * width;
 }
}

public class Circle extends Shape {
 private double radius; // m
 ...
 @Override
 public double area () {
 return Math.PI * radius * radius;
 }
}

Training.java file

Training.java file

Circle.java file

Square.java file

Shape.java file

46

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

package java.lang;

public class Object {

 public final native Class<?> getClass();

 public native int hashCode();

 public boolean equals(Object obj) {
 return (this == obj);
 }

 protected native Object clone() throws
 CloneNotSupportedException;

 public String toString() {
 return getClass().getName() + "@" +
 Integer.toHexString(hashCode());
 }

 (...)

}

The 'Object' superclass
Java training > Object oriented programming

If no 'extends' keyword...
… then the class extends Object
→ All classes extend Object

// Tree
Tree t = new Tree ();
t.setDbh (14.5);
System.out.println (“” + t);

appended to a String:
i.e. t.toString ()

Object

Tree

UML notation

package training;

/** A simple tree
 */
public class Tree {
 // diameter at breast height, cm
 private double dbh;

 public Tree () {}

 public void setDbh (double d) {
 dbh = d;
 }

 public double getDbh () {
 return dbh;
 }

 @Override
 public String toString () {
 return “Tree dbh: “ + dbh;
 }

}

a superclass for
all classes

extends Object

note: native methods have a body
in native language (e.g. C)
-> they are not abstract

Tree dbh: 14.5

training.Tree@37dd7056

toString () can be overriden
for a better result

all these methods can be
called on all objects

Tree.java file

Training.java file

Object.java file

47

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Enum
Java training > Object oriented programming

Another particular kind of class: a type for enumerations

- an enum is a type with a limited number of values

Declaration

An example of use

public enum Day {
 SUNDAY, MONDAY, TUESDAY, WEDNESDAY,
 THURSDAY, FRIDAY, SATURDAY
}

private Day day;
...

day = Day.SUNDAY;
...

48

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Cast
Java training > Object oriented programming

In an inheritance graph

- a reference can have any supertype of the real type

Tree t = new SpatializedTree ();

t.setDbh (10); // ok
t.setXY (2, 10); // ** compilation error: Tree does not define setXY ()

SpatializedTree s = (SpatializedTree) t; // cast: creates another reference
s.setXY (2, 1); // ok: SpatializedTree does define setXY ()

Tree

SpatializedTree

type of the reference

double d = 12.3;
int i = (int) d; // 12

real type of the object

- we can only use the methods the reference knows

- to access the methods of the real type, we can create another reference

Spatialized
Tree

t

Spatialized
Tree

t

s
- example of use (with the ‘instanceof’ operator)

Cast of numbers

same object

List trees = forest.getTrees();

for (Object o : trees) {
 if (o instanceof SpatializedTree) {
 SpatializedTree s = (SpatializedTree) o;
 updateRectangle(s.getX(), s.getY());
 }
}calculates the rectangle enclosing

the spatialized trees

instanceof operator: checks
the type of an object

contains spatialized and
non-spatialized trees

49

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Packages and import
Java training > Object oriented programming

Packages

- namespaces to organize the developments: groups of related classes

- first statement in the class (all lowercase)

- match directories with the same names

e.g.

- java.lang: String, Math and other basic Java classes

- java.util: List, Set... (see below)

- training: Tree and SpatializedTree

The package is part of the class name: java.lang.String, training.Tree

Import

- to simplify notation, import classes and packages

- instead of:

 write:

training.Tree t = new training.Tree ();

import training.Tree;
...
Tree t = new Tree ();

package training; first instruction

50

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Lifetime of variables
Java training > Object oriented programming

Lifetime of a variable: defined by the scope delimited by {…} in which the variable has been defined

- instance variable of a class: as long as the object it belongs is referenced
 (lifetime = lifetime of the object)

package training;

/** A simple tree
 */
public class Tree {
 // diameter at breast height, cm
 private double dbh;

 public Tree () {}

 public void setDbh (double d) {
 dbh = d;
 }

 public double getDbh () {
 return dbh;
 }

 public double getDbhSquared () {
 double res = dbh*dbh;
 return res;
 }

}

// Before instanciation of
// Tree class

// Create a tree
Tree t1 = new Tree ();

// Set its diameter
t1.setDbh (12.5);

// t1 is no more referenced
t1 = null;

dbh does not exist

an object of type Tree is created
and its reference is placed in t1:
dbh (of t1) exists and is initialized
to 0.0 (default value)

dbh has value 12.5

the created Tree is no more
referenced: it becomes candidate
to the garbage collector and dbh
does not exist anymore

scope = the body of the class

Tree.java file

Training.java file

51

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Lifetime of variables
Java training > Object oriented programming

package training;

/** A simple tree
 */
public class Tree {
 // diameter at breast height, cm
 private double dbh;

 public Tree () {}

 public void setDbh (double d) {
 dbh = d;
 }

 public double getDbh () {
 return dbh;
 }

 public double getDbhSquared () {
 double res = dbh*dbh;
 return res;
 }

}

// Create a tree
Tree t1 = new Tree ();

// Set its diameter
t1.setDbh (12.5);

// Call getDbhSquared() method
double dbhSquared = t1.getDbhSquared ();

d does not exist

d exists inside the
method

d does not exist
anymore

d is an argument of the setDbh() method: d exists only inside this method

Lifetime of a variable: defined by the scope delimited by {…} in which the variable has been defined

- argument (parameter) and local variable of a method: exist only inside the method

Training.java file

scope = the body of the method

Tree.java file

res does not exist

res exists inside the
method

res does not exist
anymore

res is declared in the getDbhSquared() method: res exists only inside this
method

scope = the body of the method

52

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Lifetime of variables
Java training > Object oriented programming

Lifetime of a variable: defined by the scope delimited by {…} in which the variable has been defined

- index of a loop: exists inside the loop (at least...)

scope = the body of the loop

// With an array
int[] array = new int[12];
int sum = 0 ;
for (int i = 0; i < array.length; i++) {
 array[i] = i;
 sum += array[i];
}

i does not exist

i exists inside the loop

i does not exist anymore

lifetime of i = exists only
inside the loop

i is created

// With an array
int[] array = new int[12];
int sum = 0 ;
int i;
for (i = 0; i < array.length; i++) {
 array[i] = i;
 sum += array[i];
}

scope = the body of the loop + ...

i is created

i exists inside the loop

i still exists and its value is 12

sum has the same value with i declared before the loop:

lifetime of i = from its
declaration + inside the
loop + after the loop

53

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Lifetime of variables
Java training > Object oriented programming

scope = the body of the loop

// With an array
int[] array = new int[12];
int sum = 0 ;
for (int i = 0; i < array.length; i++) {
 int j = i+2;
 array[i] = i;
 sum += array[i];
}

j is created

j does not exist anymore

Lifetime of a variable: defined by the scope delimited by {…} in which the variable has been defined

- local variable of a loop: exists only inside the loop

j does not exist

54

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Names of variables
Java training > Object oriented programming

Use explicit names for:

package training;

/** A simple tree
 */
public class Tree {
 // diameter at breast height, cm
 private double dbh;
 private int age;
 private double height;
 private String speciesName;

 public Tree () {}
}

- instance variables - local variables having a long range

package training;

/** A simple tree
 */
public class Tree {
 // diameter at breast height, cm
 private double dbh;

 public Tree () {}

 public void makeCalculations () {
 int anExplicitName;
 ...
 // some long calculations...
 anExplicitName = ...
 ...
 anExplicitName = ...
 }

}

Short names are authorized for variables having a short range:

// With an array
int[] array = new int[12];
int sum = 0 ;
for (int i = 0; i < array.length; i++) {
 array[i] = i;
 sum += array[i];
}

only 3 lines

55

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java reserved keywords
Java training > Object oriented programming

abstract
boolean
break
byte
case
cast
catch
char
class
const
continue
default
do
double
else
enum
extends
false
final
finally

float
for
goto (unused)
if
implements
import
instanceof
int
interface
long
native
new
null
package
private
protected
public
return
short
static

super
switch
synchronized
this
throw
throws
transient
true
try
void
volatile
while

56

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Java modifiers
Java training > Object oriented programming

interface variable

x x x

final x x x x

native x

x x x x

x x

x x

public x x x x

x x x x

x

x

volatile x

class field method initializer

abstract

none (package)

private

protected

static

synchronized

transient

a final field cannot be changed e.g. Math.PI

a final method can not be overridena final class can not be subclassed e.g. java.lang.String

57

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Resources
Java training > Resources

- a focus on the collection framework
- the Collection interface
- ArrayList
- HashSet
- Map
- the tools in the Collections class
- how to iterate on objects in collections
- how to iterate on objects in maps
- collections and generics
- online documentation
- online documentation: javadoc
- online documentation: tutorials
- links to go further

58

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

A focus on the collection framework
Java training > Resources

A collection is like an array, but without a size limitation (size can vary during execution)

- contains references

- may have distinctive features

- a list keeps insertion order

- a set contains no duplicates and has no order

- the 8 simple types (int, double, boolean...) are not objects → need a wrapper object

Byte, Short, Integer, Long, Float, Double, Character, Boolean

Java helps: Integer i = 12; (autoboxing / unboxing)

- all collections implement the Collection interface

59

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

The Collection interface
Java training > Resources

Implemented by all collections

public boolean add (Object o); // adds o
public boolean remove (Object o); // removes o

public void clear (); // removes all objects
public boolean isEmpty (); // true if the collection is empty

public int size (); // number of objects in the collection
public boolean contains (Object o); // true if o is in the collection
...

60

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

ArrayList
Java training > Resources

List

ArrayListArrayList
- implements the List interface
- keeps insertion order
- accepts duplicates
- specific methods added

public void add (int index, Object o); // adds o at the given index (shifts subsequent elements)
public Object get (int index); // returns the object at the given index
public int indexOf (Object o); // returns the index of o
public Object remove (int index); // removes the object at the given index
...

List l = new ArrayList ();
l.add ("Robert"); // add () comes from Collection
l.add ("Brad");
l.add ("Robert");

int n = l.size (); // 3
String s = (String) l.get (0); // "Robert"

Collection

61

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

HashSet
Java training > Resources

Set

HashSetHashSet
- implements the Set interface
- does not keep insertion order
- does not accept duplicates

Set s = new HashSet ();

s.add ("one");
s.add ("two");
s.add ("one"); // duplicate, ignored

int n = s.size (); // 2

if (s.contains ("one"))... // true
if (s.contains ("three"))... // false

Collection

62

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Maps
Java training > Resources

Map

HashMap
A Map associates a key with a value

- the common Map implementation is HashMap
- keys must be unique (like in a Set)
- keys and values are references

Map m = new HashMap ();

m.put ("Red", new Color (1, 0, 0));
m.put ("Green", new Color (0, 1, 0));
m.put ("Blue", new Color (0, 0, 1));

Color c = (Color) m.get ("Red"); // returns a color object

if (m.containsKey ("Blue"))... // true

Set s = m.keySet (); // set of keys: Red, Green, Blue

keys

"Red"

"Green"

"Blue"

Color (1, 0, 0)

Color (0, 1, 0)

Color (0, 0, 1)

values

63

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

The tools in the Collections class
Java training > Resources

Tools for the collections are proposed in a class: Collections

public static final List EMPTY_LIST
public static final Set EMPTY_SET
public static final Map EMPTY_MAP

public static void sort(List list)
public static void sort(List list, Comparator c)

public static void shuffle(List list)
public static void reverse(List list)

public static Object min(Collection coll)
public static Object max(Collection coll)

empty collections and maps

sorting

changing elements order

// Random order
Collections.shuffle (list);

64

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

How to iterate on objects in collections
Java training > Resources

// List of Tree
List l = new ArrayList ();
l.add (new Tree (5.5));
l.add (new Tree (2.3));
l.add (new Tree (4.1));
...

// Loop with an Iterator
for (Iterator i = l.iterator (); i.hasNext ();) {
 Tree t = (Tree) i.next ();

 if (t.getDbh () < 3) {i.remove ();}

}

an Iterator + a cast

the iterator can remove the
current element from the list

// Loop with a foreach
for (Object o : l) {
 Tree t = (Tree) o;

 t.setDbh (t.getDbh () * 1.1);
}

a cast is needed at iteration time

constructor takes a dbh

Two syntaxes to loop on a list

65

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

How to iterate on objects in maps
Java training > Resources

Map m = new HashMap ();
m.put ("Red", new Color (1, 0, 0));
m.put ("Green", new Color (0, 1, 0));
m.put ("Blue", new Color (0, 0, 1));

for (Object o : m.keySet ()) {
 String key = (String) o;
 //...
}

for (Object o : m.values ()) {
 Color value = (Color) o;
 //...
}

iterate on keys

iterate on values

66

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Collections and generics
Java training > Resources

// List of Tree
List<Tree> l = new ArrayList<Tree> ();
l.add (new Tree (1.1));
l.add (new Tree (2.5));
l.add (new Tree (3.4));

// Simplified foreach, no cast needed
for (Tree t : l) {

 t.setDbh (t.getDbh () * 1.1);

}
...

// Print the result
for (Tree t : l) {
 System.out.println ("Tree dbh: " + t.getDbh ());
}

longer: specify type

shorter: no cast

List<E>

ArrayList<E>

Collection<E>
Collections are manipulated by generic classes that
implement Collection<E>

E represents the type of the elements of the collection

67

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Online documentation
Java training > Resources

http://download.oracle.com/javase/8/docs/

68

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Online documentation: javadoc
Java training > Resources

http://download.oracle.com/javase/8/docs/api/

69

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Online documentation: tutorials
Java training > Resources

http://docs.oracle.com/javase/tutorial/

70

An introduction to Java - F. de Coligny, N. Beudez - INRAE AMAP - January 2020

Links to go further
Java training > Resources

Oracle and Sun’s tutorials
http://docs.oracle.com/javase/tutorial/
see the 'Getting Started' section

Learning the Java language
http://docs.oracle.com/javase/tutorial/java/index.html
https://openclassrooms.com/fr/courses/26832-apprenez-a-programmer-en-java

Coding conventions
http://www.oracle.com/technetwork/java/codeconvtoc-136057.html

Resources on the Capsis web site
http://capsis.cirad.fr

Learn to program in Java: Openclassroom web site
https://openclassrooms.com/fr/courses/26832-apprenez-a-programmer-en-java

Millions of books… including these references
“Java In A Nutshell”, David Flanagan - O'Reilly (several editions)
“Programmer en Java”, Claude Delannoy - Eyrolles

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67
	Diapo 68
	Diapo 69
	Diapo 70

