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Numerical Details and SAS Programs for  
Parameter Recovery of the SB Distribution

Bernard R. Parresol, Teresa Fidalgo Fonseca, and Carlos Pacheco Marques

A variety of parameter estimation methods are available for 
the SB distribution, such as the percentile method, linear 
and nonlinear regression methods, moments, and maximum 
likelihood. These have been reviewed and compared by 
Zhou and McTague (1996) and Kamziah and others (1999). 
The state-of-the-art approach for parameter estimation in 
growth-and yield-modeling is called parameter recovery 
(Hyink and Moser 1983). Parresol (2003) presented a 
loblolly pine (Pinus taeda L.) growth-and-yield model 
using the SB distribution where one parameter of the 
distribution was fixed and the remaining three parameters 
were estimated in a parameter-recovery context. Parresol’s 
new methodology was more general than previous SB-
based growth-and yield-models which recovered only one 
or two parameters (e.g., Newberry and Burk 1985, Parresol 
1983, Scolforo and Thierschi 1998). Fonseca (2004) and 
Fonseca and others (2009) extended Parresol’s scheme to 
create a methodology that completely recovers Johnson’s SB 
diameter distribution from stand variables. The objectives 
of this article are (1) to present the details necessary to 
implement the three-parameter recovery scheme of Parresol 
(2003) and the all-parameter recovery scheme of Fonseca 
(2004) and Fonseca and others (2009) and (2) to present and 
demonstrate the Statistical Analysis System (SAS) programs 
that employ these schemes.

The SB Distribution

Let the random variable D represent tree diameter, and let d 
stand for particular values from the range of D. The equation 
for Johnson’s SB distribution for tree diameter is

Abstract

The four-parameter SB distribution has seen widespread use in growth-and-
yield modeling because it covers a broad spectrum of shapes, fitting both 
positively and negatively skewed data and bimodal configurations. Two 
recent parameter recovery schemes, an approach whereby characteristics 
of a statistical distribution are equated with attributes of a stand in order 
to solve for the parameters of the distribution, are described for the SB. 
The first scheme permits recovery of the range and both shape parameters, 
but the location parameter must be a priori specified. The second scheme 
is an all-parameter recovery model. The details of the parameter recovery 
models, that is the system of equations with their concomitant constraints, 
are laid out. A solution technique for the constrained parameter recovery 
models that uses the Kuhn-Tucker conditions, the Lagrange function, and 
the Levenberg-Marquardt algorithm is briefly reviewed. Two Statistical 
Analysis System programs that implement the parameter recovery models, 
SB Recovery 3parm and SB Recovery 4parm, are listed and demonstrated 
with instructive examples.
 
Keywords: Basal area-size distribution, constraint functions, diameter 
distributions, moments, nonlinear programming problem, restricted 
estimation.

Introduction

Forecasting number of trees in a stand over diameter classes 
is customarily done through the use of probability density 
functions (PDF). Many distributions have been utilized such 
as the beta, Weibull, gamma, and lognormal. Hafley and 
Schreuder (1977) examined the skewness and kurtosis of 
various statistical distributions as a measure of the flexibility 
of the distributions in regard to their changes in shape. They 
showed that the four-parameter SB PDF (Johnson 1949, SB 
means system bounded) provides greater generality in terms 
of skewness and kurtosis than many of the usually applied 
distributions in forestry. Based on Hafley and Schreuder’s 
findings, many growth-and-yield models that used the SB 
distribution ensued (e.g., Fonseca 2004, Hafley and Buford 
1985, Kamziah and others 1999, Kiviste and others 2003, 
Lopes 2001, Parresol 2003, Tham 1988, Von Gadow 1983).
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It is characterized by the location parameter , the range 
parameter , and shape parameters  and . Although there 
is no closed form expression for its cumulative distribution 
function, if D ~ SB ( , , ,   ) then

     

z d d= + −( ) + − ln / ( , )∼ 0 1( )
 

(2)

z being a standard normal deviate. This property means 
integration of equation (1), i.e., the SB PDF, over specific 
classes can be accomplished by application of the well-
tabulated standard normal distribution. It is easy to show 
that the shape of the distribution of D depends only on the 
parameters  and . For, defining a new variable

     

y f d d= = −( ) ( ) /
 

(3)

it follows from equation (2) that

    

z y yy
= + − ln / )1 ∼( ) ( ,0 1

 
(4)

and Y must have a distribution of the same shape as D 
(Johnson and Kotz 1970).

Figure 1 shows a number of the possible shapes that the SB 
distribution can assume. Often stands display a unimodal 
shape in the range of tree diameters, as displayed in figure 
1A. The first line is a right or positively skewed shape, 
which occurs when  has a positive value. The middle line is 
a symmetric shape, like a normal curve, which occurs when 

 is zero. The third line is a left or negatively skewed shape, 
which occurs when  takes on a negative value. Figure 1B 
shows other shapes that the SB distribution can assume. 
Uneven-aged stands typically have a reverse-J shape to the 
distribution of tree diameters. As seen in the graph, bimodal 
shapes are possible with the SB distribution, as might occur 
with a storm-damaged stand where most of the overstory is 
taken out but some large trees survive.

Parameter Recovery

The parameter recovery approach uses stand-average 
attributes such as the mean diameter and basal area per 
unit area to obtain estimates of the underlying diameter 
distribution (Hyink and Moser 1983). The fundamental idea 
is to relate characteristics of an assumed distribution (in our 
case the SB ), such as percentile points or moments, with 
attributes of the stand and, thereby, recover the parameters 
of the distribution that would yield those exact values. 

Put another way, in the parameter recovery method, the 
parameters of the distribution function are solved from 
a system of equations, equating (measured or predicted) 
stand attributes to their analytical counterparts (Kangas and 
Maltamos 2000). 

Three-Parameter Recovery System

In Parresol (2003) a parameter recovery model for the 
range and shape parameters was developed that uses the 
median and the first and second noncentral moments of 

Figure 1—Johnson SB distributions with various values of the  and 
 shape parameters. (A) displays unimodel shapes (right-skewed for 
 = 1, symmetric for  = 0, left-skewed for  = -1). (B) displays a 

reverse-J shaped distribution and a bimodal distribution.
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the diameter distribution (average diameter and quadratic 
mean diameter). The  parameter is a priori specified. 
Parresol showed that the  parameter could be expressed as 
a function of the other three parameters

    

=
−

−












ln
( )d

median

1
 

(5)

where
 

dmedian is the median tree diameter or 50th percentile of the 

diameter distribution. This allowed for a system of two 
equations in two unknowns to recover the range and both 
shape parameters.

  

d y= + µ
1
( ) 

(6)

  

y y+ 1
2

2
)2 (µ ) (µB N= +2

 
(7)

where 
 
 d =  average stand diameter
 B =  basal area per unit area
 N =  trees per unit area
  =  units conversion (π/40 000 for metric units 
  and π/576 for English units)
 µ

1
( )y  =  first noncentral moment of the distribution of Y, 

  and 
 µ

2
( )y  =  second noncentral moment of the distribution of Y

As mentioned,  is prespecified,  and  are iteratively 
solved for using equations (6) and (7), and then  is solved 
for using equation (5). For details of the derivation of the 
three-parameter recovery model see Parresol (2003).

All-Parameter Recovery System

Fonseca (2004), working with maritime pine (P. pinaster 
Aiton) diameter distributions, extended the three-parameter 
recovery scheme to create a methodology that recovers 
all four parameters of Johnson’s SB distribution from 
stand variables. In order to recover all the parameters it is 
necessary to supplement equations (5), (6), and (7) with an 
additional function. The idea behind parameter recovery is 
to use values from the statistical distribution that (a) directly 
relate to stand characteristics, (b) are quantities that foresters 
can understand, and (c) have a meaningful interpretation. 
As already stated, the first noncentral moment of statistical 
distributions is directly related to average stand diameter, 
and the second noncentral moment is readily understood 

as quadratic mean diameter, i.e., the tree of average basal 
area that we will designate as dq. A paper by Gove and 
Patil (1998) gives a meaningful interpretation of the third 
noncentral moment of statistical distributions as it relates 
to stand diameter. Specifically, understanding arises when 
diameter distributions are viewed with respect to tree  
basal area (basal area-size distribution or BASD) rather  
than to tree frequency. Designating the BASD mean as 
 d

B
, the third noncentral moment of the diameter distribution 

is the product of the mean BASD and the square of the 
quadratic mean diameter, that is, =µ

3
2d

B q
d d( ) . Using this 

property, Fonseca derived the following formula for the  
SB distribution:

 

d d y y y
B q

2 3 2
1

2
2

3
3

3 3= + + +( ) ( ) ( )µ µµ
 

(8)

Inclusion of equation (8) in Parresol’s (2003) earlier system 
allows for the  parameter also to be recovered. An estimate 
of the third noncentral moment of diameter distribution can 
be calculated from plot diameters as follows:

 

ˆ ( ) = =µ
3

3

1d
d

n

i
i

n

 
(9)

 

where
 
 n = number of trees on the plot

For details on the development of the all-parameter recovery 
model please refer to Fonseca (2004) and Fonseca and 
others (2009).

Procedures for Solving the Parameter 
Recovery Systems

The SB parameter recovery strategies involve solving 
complex systems of nonlinear equations. Parresol’s 
scheme uses two nonlinear equations in two unknowns and 
Fonseca’s scheme is based on three nonlinear equations 
in three unknowns. By subtracting the left-hand sides of 
equations (6), (7), and (8) we equate the functions to zero. 
By squaring the functions we create a system whereby we 
can use a nonlinear least-squares minimization routine. A 
least-squares problem is a special form of minimization 
problem where the objective function (the function to be 
minimized) is defined as a sum of squares of other functions 
(in our case nonlinear functions).
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F f f
m

( ) ( ) ( )x x x= + + 
1
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(10)

where
 
 x = ( , , , )x x x

p1 2
…

 
is a vector of p unknown parameters 

  and m ≥ p

There are several minimization techniques available to solve 
for nonlinear systems. The Levenberg-Marquardt (LM) 
algorithm is one that works well on many practical problems 
and, thus, is a sensible choice.

Levenberg-Marquardt Algorithm

Starting with an initial value vector x (a guess) to the 
solution, the LM iterative update formula is (Ralston and 
Rabinowitz 1978, page 363)

 

x x J J f
i i i i i i i+

−= − ′ +
1

1θ( )I J′
 

(11)

where
 
 θ

i
≥ 0 = a scaling factor

 I = an identity matrix, and
  the Jacobian at each iteration point xi is

 

J
x x

i

j

k

f

x
 i

=










=

( )  
(12)

The Jacobian is a matrix of partial derivatives. For the three-
parameter recovery system the partial derivatives are given 
in Parresol (2003). For the all-parameter recovery system the 
partial derivatives are given in Fonseca and others (2009). 
The LM algorithm is a blend of gradient descent (also called 
steepest descent) and Gauss-Newton iteration. For a detailed 
explanation of the LM algorithm and its advantages see 
Ralston and Rabinowitz (1978) and Ranganathan (2004).

Global Minimum, Convergence,  
and Initial Values

All optimization algorithms converge towards local rather 
than global optima. The smallest local minimum of an 
objective function is called the global minimum, and the 
goal is to find the solution vector that returns the global 
minimum of the objective function. For the SB parameter 
recovery models the absolute minimum of the objective 

equation (10) is zero, but the global minimum may be 
greater than zero due to constraints imposed on the solution. 
From optimization theory (see Avriel 2003), a local 
minimizer �x satisfies the following three conditions:

1. There exists a small, feasible neighborhood of �x that does 
not contain any point x with a smaller function value 
F F( ) ( )x x< � . 

2. The vector of first derivatives (gradient) g x x( ) ( )� �F∇=  of 
the objective function F (projected toward the feasible 
region) at the point �x is zero. 

3. The matrix of second derivatives G x x( ) ( )� �2
F∇=  (Hessian 

matrix) of the objective function F (projected toward the 
feasible region) at the point �x is positive definite.

One reason for choosing the LM algorithm is that for 
θ

i
> 0 

the inverse matrix in equation (11) always exists 
and condition 3 is always met. Condition 2 gives us a 
convenient convergence criterion to stop the iteration of 
equation (11) and declare that a local minimizer �x has been 
found. Termination requires the gradient to vanish, or in 
mathematical terms, that the maximum absolute gradient 
element be very small, such as  

 

max ( )( )

j j
kg x ≤ −10 5

 (13)

Other definitions of convergence can be used. For example, 
terminate when the Euclidean distance between parameter 
vectors in consecutive iterations is smaller than a critical 
value such as 10-8. Multiple tests for convergence are 
typically used with optimization routines. To check that we 
are at the global minimum we need to compute the L1 norm

 

f x x( ) ( )� �
1

1

=
=

f
i

i

m

 
(14)

and verify that it is close to zero. It is a good idea to run 
various optimizations with a pattern of different starting 
values to check that the global minimum is obtained. If the 
optimization routine fails, i.e., condition 1 is not met or 
the maximum number of iterations is exceeded, simply use 
different starting values.

Initial values are required to start the iteration of equation 
(11). Normally information from inventory data is available 
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to help guide us in choosing good starting values. We 
can take the observed minimum and maximum diameters 
and use their difference as an initial guess for the range 
parameter . For the location parameter , a scaler multiple 
such as 0.5 to 0.8 of the observed minimum diameter gives 
a reasonable initial value. Concerning the shape parameter 

, for bimodal shapes use a starting value ≤ 0.7 and for 
unimodal shapes use an initial value ≥ 1.

Parameter Restrictions

To prevent the LM algorithm [equation (11)] from 
projecting the parameter vector x into an unfeasible 
parameter space, it is necessary to impose restrictions on 
the parameters. Constraints on the parameter space can 
also prevent unreasonable solutions from occurring. It is 
important to note that constraints can be equality restrictions 
or inequality restrictions of the form ≤ or ≥, but not < or >.

Three-parameter recovery system—The constraints are 
constructed as follows. From equation (5) we know that 

−ln / ( )d
median

1= − , and this equation reveals that 
/ ( )d

median
− > 1  to avoid an illegal log argument, thus 

d
median

− < . As a practical matter the range should be 
restricted. A reasonable upper bound is 2 × initial guess for  

. By definition of the SB distribution,  > 0. From all this 
we have

 

d
median

initial  value− < ≤ ×

<

2

0  
(15)

Because constraints must be expressed as ≤ or ≥, we need 
to make small adjustments in equation (15). Our final 
constraints are

 

d
median

initial  value− + ≤ ≤ ×

≤

0 01 2

0 01

.

.  
(16)

All-parameter recovery system—For this system we 
need both boundary conditions and a linear constraint. In 
this system  is a random parameter. Again, consider the 

equation −ln / ( )d
median

1= − . It is obvious that  

must be less than dmedian to avoid an illegal log argument. 

We know that  cannot be less than zero, hence 
0 ≤  < dmedian. Alternatively, one can use observed 

minimum diameter as an upper bound constraint for . The 

equation also reveals that / ( )d
median

− > 1 to avoid an 

illegal log argument, thus dmedian −  < . Because  and  

are random parameters, this gives the linear restriction 
 +  > dmedian. As before we want to restrict the range and 

we know that  > 0. Gathering all this information gives

 

0

2

0

≤ <

≤ ×

<

+ >

d

d

median

median

initial  value

 

(17)

We need to make small adjustments in equation (17) 
to create the necessary ≤ and ≥ inequalities. Our final 
constraints are

 

0 0 01

2

0 01

≤ ≤ −

≤ ×

≤

+ ≥

d

d

median

m

initial  value

.

.

eedian
+ 0 01.

 

(18)

Restricted Estimation

From the previous section we showed that some of the SB 
parameters are subject to boundary constraints and that  
and  are subject to a linear restriction when recovering all 
parameters. The Kuhn-Tucker theorem (Avriel 2003, Kuhn 
and Tucker 1951) is a theorem in nonlinear programming 
which states that if a regularity condition holds and the 
objective function F and constraint functions ci are convex, 
then a solution �x which satisfies the conditions ci for a 
vector of multipliers  is a local optimum (a minimum or 
maximum depending on the problem). The Kuhn-Tucker 
theorem is a generalization of Lagrange multipliers. The 
linear combination of objective and constraint functions

 

L F c
i i

( , ) ( ) ( )x x x−=  (19)

is the Lagrange function and the coefficients i are the 
Lagrange multipliers. Because of constraints on the 
parameters in both recovery systems, we will actually 
minimize the Lagrange function [equation (19)], and the 
three conditions for a local minimizer �x still apply.
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Statistical Analysis System Programs

We developed two SAS, version 9.1, programs that utilize 
the nonlinear programming Levenberg-Marquardt (NLPLM) 
procedure, part of the interactive matrix language (IML) 
capabilities of SAS software (SAS Institute Inc. 2004, pages 
795–798). The first program, SB Recovery 3parm, is listed 
in appendix A. The second program, SB Recovery 4parm, 
is given in appendix B. While the two programs share the 
same structure, there are differences in the input needed, 
in the makeup of the constraint matrix, and in the system 
of equations to be solved. Hence, we felt it would be better 
to create two separate programs rather than one program 
with dichotomies. It is important to note that the programs 
can use either the international system of units (the metric 
system) or the English system of units. For input and output 
values in the metric system, use the -value on line 207 of 
SB Recovery 3parm (line 206 should start with an * to make 
it a comment line) and on line 246 of SB Recovery 4parm 
(line 245 should start with an * to make it a comment line). 
Likewise, for input and output values in the English system, 
use the -value on line 206 of SB Recovery 3parm (line 207 
should start with an * to make it a comment line) and on line 
245 of SB Recovery 4parm (line 246 should start with an * 
to make it a comment line).

SB Recovery 3parm

This program is designed to input required data through an 
Excel® (Microsoft Corporation) file. The file location and 
name are specified by the user on line 53 of the program 
(see appendix A). The program checks the validity of the 
initial values in a “do loop” on lines 254–259. On line 59 
the user can supply a descriptive project title that will print 
on the top of all printed output from the program. The 
amount of printed output is controlled by the options vector 
on line 210. The value of the second element of the vector 
controls the output from the NLPLM procedure. A value 
of zero turns off output. A value of 1 turns on summaries 
and iteration history. More output can be generated using 
values 2–5, but generally the summary and iteration history 
are more than sufficient. See the SAS/IML® 9.1 “User’s 
Guide” for more information on the options vector (SAS 
Institute Inc. 2004, pages 343–349). The constraint matrix 
is initialized on line 238. Lines 261–268 actually set the 
bounds for  in the matrix. At the user’s discretion, on 
line 263 a smaller or larger upper bound can be specified 
for , but generally 2 × initial value works well. The 

NLPLM procedure gives a return code (RC) that indicates 
the termination criterion met or the reason for failure. A 
positive value indicates successful termination, while a 
negative value indicates unsuccessful termination. An RC 
= 3 indicates the gradient vanished, that is, convergence as 
specified by equation (13) was met. An RC = 7 indicates 
convergence based on Euclidean distance. See the SAS/
IML® 9.1 “User’s Guide” for explanations of the 20 
RC values (SAS Institute Inc. 2004, page 333) and the 
definitions of the various termination criteria used (pages 
349–356). The program creates an output file that contains 
the label for the observation, the parameter estimates, the 
value of the L1 norm [equation (14)], a “YES” or “NO” 
convergence tag, and the RC from the NLPLM procedure. 
The length of the label variable is initialized on line 190 and 
can be set to any length by the user. The program prints the 
results dataset (line 285), and output is saved to an Excel® 
file. The file location and name are specified by the user on 
line 292 of the program.

SB Recovery 4parm

This program is also designed to input required data through 
an Excel® file. The file location and name are specified by 
the user on line 64 of the program (see appendix B). The 
program checks the validity of the initial values in a “do 
loop” on lines 308–315. On line 70 the user can supply 
a descriptive project title that will print on the top of all 
printed output from the program. As in the first program, 
the amount of printed output is controlled by the options 
vector on line 249. Unlike the first program, this program 
utilizes the TC or termination criteria vector on line 254. 
This vector permits users to control the maximum number 
of iterations (first element of the vector) and the maximum 
number of function calls (second element of the vector). 
The complexity of solving three simultaneous equations 
sometimes necessitates increasing these values. The 
constraint matrix is initialized on lines 291–293. The upper 
bound constraint for  is set on line 317 and for  on line 
319. At the user’s discretion, these upper bounds can be 
changed. Like in the first program, the NLPLM procedure 
gives a RC that indicates the termination status, and an 
output file is generated. The length of the label variable 
is set on line 229. The program prints the results dataset 
(line 345) and the output is saved to an Excel® file. The file 
location and name are specified by the user on line 352 of 
the program.
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Examples and Discussion

Practical examples of the SB recovery SAS programs 
heretofore described are presented and discussed. The 
chosen cases were taken from real stands in a selective 
way in order to provide an overall picture of the programs’ 
implementation and SB flexibility. In the following 
examples, stand and tree variable values are expressed in  
the metric system.

SB Recovery 3parm

Figure 2 shows an example Excel® input file with variable 
labels in row 1. ID is stand code (character variable), BA 
is basal area per unit area (m2ha-1), and NT is number of 
trees per unit area (trees ha-1). SBMEDIAN, SBMEAN, 

and DMIN refer, respectively, to the median, the average, 
and the minimum diameter (in cm) of the observed diameter 
distribution. IV_LAMBDA and IV_DELTA are the initial 
values set for the  and the  parameters. Consider the four 
observations in figure 2. Let us use this file as input into SB 
Recovery 3parm. The Excel® file output by the program is 
given in figure 3. As we can see, a convergent solution was 
obtained on all four observations, and the L1 norm values 
are very small, < 10-7 (essentially zero) for observations 
“S1104” and “S1606.” The use of different starting values 
resulted in the same solutions confirming that the global 
minimums were obtained. Recall that we are using restricted 
estimation and we can see in figure 3 that the ˆ  values for 
“S0204” and “S1906” are at the upper boundary constraint. 
This is why the L1 norm values are slightly positive. 
However, they are sufficiently small as not to cause concern. 

Figure 2—Input file used on SB Recovery 3parm program (see text for variable labels description).

Figure 3—Output file created by SB Recovery 3parm program. 
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Figure 4—Observed frequencies and SB simulated distributions using the three-parameter recovery program. (A) Observation “S0204” is a classic 
right-skewed unimodal fit. In (B) observation “S1104” and (C) observation “S1606” we see reasonable bimodal fits to the observed frequencies.  
(D) observation “S1906” shows an excellent fit to the reverse-J shaped distribution.

Hence, there is no need to change the upper bound  
for  for these two observations.

A  value < 0.7 generally results in a bimodal shape. For 
observation “S1104” we have  = 0.35 and  = −0.45 which 
should give a decidedly left-skewed bimodal shape, and for 
observation “S1606” we have  = 0.64 and  = 0.06 which 
should give a slightly right-skewed bimodal shape. The 
observed and SB simulated frequencies by 5-cm diameter 
classes are shown in figure 4. In part A, for observation 
“S0204,” we have a classic right-skewed unimodal graph. 
We see in part B (observation “S1104”) a mode at 10 cm 
and the second much larger mode (as expected) at 20 cm. 
There is a perfect pairing of the observed and simulated 
mode locations and the SB curve gives a good fit to the 
observed mode heights. Part C of the graph displays another 
bimodal distribution (observation “S1606”) with predicted 
modes at 15 and 40 cm. The observed modes occurred at 
20 and 40 cm, and though there is some disagreement, the 
SB curve is a reasonable simulation. Statistical distributions 
such as the Weibull and lognormal cannot fit such shapes. 
Finally, in part D (observation “S1906”), we see a very good 
match between the observed and predicted reverse-J  
shaped distributions.

SB Recovery 4parm

Let us look at new examples using the all-parameter 
recovery system. We will use as input into program SB 
Recovery 4parm the file displayed in figure 5. The additional 
variable used as input, labeled SBMUPRIME3, refers to 
the third noncentral moment of diameter distribution. The 
variable IV_XI is the initial value for the  parameter (in our 
case it was set to 0.8 of observed minimum diameter). The 
Excel® file output by the program is given in figure 6. There 
are several things to note in the output file. Observation 
“S2112” had an unsuccessful termination, the RC = −8 
code means maximum number of iterations exceeded. For 
observation “S2504” the solution for  occurred on the 
lower boundary at 0.01. Figure 7 is a graph of “S2504” 
and illustrates that this is not a reasonable simulation. The 
solution for observation “S2804” looks good. Notice that 
the  value is at its lower boundary of zero but the L1 norm 
is very small. The solution for observation “S0406” looks 
reasonable but has the largest L1 norm value of the four 
solutions. This is probably due to the value of  being at its 
upper bound.



9

0

100

200

300

400

500

600

700

5 10 15 20 25 30 35 40 45 50

DBH (cm)

N
um

be
r 

of
 tr

ee
s 

Figure 5—Input file used on SB Recovery 4parm program (see text for variable labels description). 

Figure 6—Output file created by SB Recovery 4parm program. 

Figure 7—Observed frequencies and SB simulated distribution for observation 
“S2504” using the initial solution of the all-parameter recovery program. 
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Let us do another run of the program. The ˆ  = 16.27 cm 
solution for observation “S2504” seems quite large so we 
will impose the observed plot minimum diameter of 12 
cm as an upper bound. Line 318 of the program is a blank 
spacing line. To change the upper bound  constraint for 
observation “S2504” we add the following “IF” statement 
on line 318: “IF LABEL=‘S2504’ THEN UB_XI = 12.” For 
observations “S2112” and “S0406” we will try a different 
set of starting values. The updated input file is shown in 
figure 8. The output file from this new run is shown in  
figure 9. We see that this time a convergent solution 
was obtained on “S2112” and the L1 norm goes to zero. 
The  and  values have substantially increased and are 
more in line with expectations. Figure 10A shows a good 
correspondence between the observed and simulated 
distributions. The new solution for observation “S2504” has 
a larger L1 norm (due to the new  constraint), but compare 
the graph based on the old solution displayed in figure 7 
with the new graph shown in figure 10B. It is obvious that 
the new solution, based on imposing observed minimum 
diameter as an upper bound constraint on , gives a superior 
fit against the observed distribution. Concerning observation 

“S2804” figure 10C indicates a close conformance between 
the observed and predicted distribution. For observation 
“S0406,” looking at the old L1 norm value in figure 6 
(≈ 0.03) and the new L1 norm value in figure 9 (≈ 0), we see 
the original convergent solution was at a local minimum. 
The new solution is at the global minimum and is displayed 
in figure 10D.

As a final example, let us refit observation “S1104” using 
the all-parameter recovery program. The input for this 
observation was shown in figure 2 as input for SB Recovery 
3parm. We need to include the value for SBMUPRIME3 
which is 5014.2784444. The solution is as follows:  
ˆ
 = 6.47538, ˆ

 = 14.68004, ˆ  = 0.30239, ˆ
 = 0.26946, and 

the L1 norm = 1.83 × 10-12. The observed and simulated 
distributions are shown in figure 11. Compared to figure 4B, 
we see a much closer correspondence between observed  
and predicted frequencies in the 10- and 15-cm diameter 
classes. In this instance, the all-parameter recovery solution 
provides a better fit compared to the three-parameter 
recovery solution.

Figure 8—Updated initial values used on SB Recovery 4parm program (see text for details).  

Figure 9—Output file created by SB Recovery 4parm program for the new run with updated initial values.



11

0

50

100

150

200

250

300

350

400

5 10 15 20 25 30 35 40 45 50
DBH (cm)

N
um

be
r 

of
 tr

ee
s 

0

50

100

150

200

250

5 10 15 20 25 30 35 40 45 50
DBH (cm)

N
um

be
r 

of
 tr

ee
s 

 (A) S2112

0

50

100
150

200

250

300
350

400

450

5 10 15 20 25 30 35 40 45 50

DBH (cm)

N
um

be
r 

of
 tr

ee
s 

 (B) S2504

0

50

100

150

200

250

300

350

400

5 10 15 20 25 30 35 40 45 50
DBH (cm)

N
um

be
r 

of
 tr

ee
s 

 (C) S2804

0
100
200
300
400
500
600
700
800
900

1,000

5 10 15 20 25 30 35 40 45 50
DBH (cm)

N
um

be
r 

of
 tr

ee
s 

 (D) S0406

Figure 11—Observed frequencies and SB simulated distribution for 
observation “S1104” using the all-parameter recovery program. 

Figure 10—Observed frequencies and SB simulated distributions using the updated output values of the all-parameter recovery program. All four 
graphs (A-D) display good fits to the observed frequencies.
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Concluding Remarks

Distinct parameter estimation methods are available for 
the SB distribution. Nevertheless, at the state-of-the-art, 
few studies have been conducted for its inclusion in stand 
models through a moment recovery-based approach. A 
major reason is that the SB parameter recovery strategies 
involve solving complex systems of nonlinear equations. In 
this paper we presented methodology that was implemented 
in two SAS programs: SB Recovery 3parm and SB Recovery 
4parm.

The programs were designed using a robust nonlinear least-
squares minimization technique, the LM algorithm, and 
exploitation of the IML capabilities of SAS software. It is 
necessary to impose restrictions on the parameters to prevent 
projecting the parameters into an unfeasible space and/or  
to avoid unreasonable solutions. Restricted estimation  
was achieved using the Kuhn-Tucker theorem and the 
Lagrange function.

Instructive examples of the SB recovery models were 
presented in order to illustrate their use. Users should be 
capable of reproducing the example runs and doing new 
simulations in an easy manner. SAS programs in text files 
are available by request from the authors.
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(Note: Line numbers are for reference and are not part of the program.)
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 Numerical details and SAS programs for parameter recovery of the SB distribution. 
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 Service, Southern Research Station. 27 p.

The four-parameter SB distribution has seen widespread use in growth-and-yield modeling because 
it covers a broad spectrum of shapes, fitting both positively and negatively skewed data and bimodal 
configurations. Two recent parameter recovery schemes, an approach whereby characteristics of a 
statistical distribution are equated with attributes of a stand in order to solve for the parameters of 
the distribution, are described for the SB. The first scheme permits recovery of the range and both 
shape parameters, but the location parameter must be a priori specified. The second scheme is an 
all-parameter recovery model. The details of the parameter recovery models, that is the system of 
equations with their concomitant constraints, are laid out. A solution technique for the constrained 
parameter recovery models that uses the Kuhn-Tucker conditions, the Lagrange function, and the 
Levenberg-Marquardt algorithm is briefly reviewed. Two Statistical Analysis System programs that 
implement the parameter recovery models, SB Recovery 3parm and SB Recovery 4parm, are listed 
and demonstrated with instructive examples.
 
Keywords: Basal area-size distribution, constraint functions, diameter distributions, moments, 
nonlinear programming problem, restricted estimation.
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