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No clustering, w/NAs

50+ years of individual-based forest models %
* Individual-based models of forest dynamics available since =
(at IeaSt) 1972 SOME ECOLOGICAL CONSEQUENCES OF A COMPUTER
MODEL OF FOREST GROWTH
By DANIEL B. BOTKIN*, JAMES F. JANAKYt AND JAMES R. WALLISt
* School of Forestry and Environmental Sciences, Yale University, New Haven,
Connecticut 06511, U.S.A. and
+ 1BM Thomas J. Watson Research Center,
Yorktown Heights, New York 10598, U.S.A.
INTRODUCTION |
The complexity of a forest ecosystem makes difficult any attempt to synthesize knowledge
about forest dynamics or to perceive the implications of information and assumptions
regarding forest growth. Although digital computer simulation seems to offer a potential .
* Today, available at stand across landscape to global scales
+ Assessment of 28 models that have been used after 1996 for
simulating climate change impacts 2383843583|53i25§2:|3208¢885%:
+ Criteria: complexity of model attributes g°¢t 180 oz 8ff =
Bugmann & Seidl (2022), J Ecol Stand models Landscépe models| Global models



Canberra, complete
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Tab. S1: a) Average complexity of the attributes of the respective process group by model type. b) Diversity
(expressed as the standard deviation) of the complexity of the attributes of the respective group. Green, orange and
red shading of the cells indicates highest, intermediate, and lowest complexity or diversity per attribute group,
respectively.
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Aim: High-resolution (,local-scale“) assessment of the climate
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Summary results: Stand basal area

a)BP
o s w wo ™ o s us

-%

Difference in BA [m2/ha]

5 || = o | § Climate
———— == O .
20 L |

- A22
SESERESLER LS LR LA L SR P SRS A23
year
Uncertainty
— Max
—— Median
~— Min

* Impacts depend on CC scenario, elevation and soil

* Increasing CC severity leads to increasingly negative
impacts at low elevations

« Strong negative changes start after =2050

Huber et al. (2021), Ecol Appl

Summary results: Species composition %
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Summary results: Stand basal area %
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How robust are such results? A comparison %
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Modeling studies consistently show a lag of approximately 50-70 years
between the start of the climate change signal and the start of strong
changes in forests: 1980 + 60 = 2040 ®
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Drought and forest dynamics

Summary and conclusions

But prediction is hard, even in hindsight... A&
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A global attempt

Journal of Ecology 2015, 103, 31-43

SPECIAL FEATURE

Fig. 3 Theoretical relationship, based on the hydraulic framework,
between the temporal length of drought (duration), the relative
decrease in water availability (intensity), and the three hypothesized
mechanisms underlying mortality. Carbon starvation is hypothesized
to occur when drought duration is long enough to curtail
photosynthesis longer than the equivalent storage of carbon reserves
for maintenance of metabolism. Hydraulic failure is hypothesized to
occurif drought intensity is sufficient to push a plant past its threshold
for irreversible desiccation before carbon starvation occurs. Biotic
agents, such as insects and pathogens, can amplify or be amplified by
both carbon starvation and hydraulic failure.

McDowell et al. (2008), New Phytol
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doi: 10.1111/1365-2745.12335

FOREST RESILIENCE, TIPPING POINTS AND GLOBAL CHANGE PROCESSES
Is drought-induced forest dieback globally increasing?

Jorg Steinkamp'2* and Thomas Hickler'2?

4. Synthesis. Our results indeed suggest that dry forests have been experiencing increasing drought-
induced mortality. However, this does not apply to forests in general and the spatial variability has
been large. The poor correspondence between the simulated and reported mortality events indicates
that models like LPJ-GUESS driven by standard climatologies, and soil input data do not represent
drought-induced mortality well.
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AET/PET Steinkamp & Hickler (2015), J Ecol



| have questions

« Why C starvation and hydraulic
failure; why either-or?

* What is cause, what is effect?
Think of VPD, cavitation

* Additional mechanisms?

predisposing factors

contributing factors
inciting factor \

| Dying tree

time —

Surviving tree

vigor —

A new approach (2/2)

* Inciting factor for drought-related mortality

IncFDr = { 0, else
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REW: Relative extractable water
(Bréda et al. 2006, Ann For Sci)

E/D: Ratio of supply (=transpiration)
and demand (=PET) of soil

water in the rooting zone
(Bugmann & Solomon 2000, Ecol Appl)

Marano et al. (2025), in review

A new approach (1/2) éA

* Predisposing factor for drought-related mortality [l
Pls

Respect

_(DrM + 1, gDr > kDrTh - kDrTol
DrM = { 0, else :
[0.1...0.3]
chose 0.2
~ g
1- o (annual)
gbr = Tz k m,
1 (seasonal)

Tm= k me {Apr..Oct} m

Bugmann & Solomon (2000), Ecol App!

Marano et al. (2025), in review

Parameter estimation %

Material
Unpublished
Pls
Respect

All parameters derived by ecological reasoning,
based on literature review

Sensitivity test around values deemed plausible
* No formal calibration against measured mortality data

Does this make sense?
* Yes, we think so...
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Test 4: German ICP Level | sites, spruce

c D
. 3
2
E
. . scanario7s )
g0 o AR =02
2 g MAE = 16
@ Y
Z 3
: s .
H] g scenario90
2 5 AdjR?=0.21
g, 2, wae =158 e v e we e
g @ longitude
&

@® Fagussylvatica @ Picea abies

) T={5.3...10.5)} °C
P = {655...2182) mm

s 0
Obs. Mortality Rate (%)

Scenario = Observed morally == scenario7 == scenariod
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among 24 dominant sample trees
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ForClim v4.2, includes a simple bark beetle submodel
Data via Wellbrock et al. (2018), Thiinen Working Paper 84
Simulations from Marano et al. (2025), in prep.



So what does this imply? %

Any model represents a hypothesis about reality
(i.e., what is going on in forest ecosystems, in our case)

Testing that hypothesis based on approximate parameter
values may be preferable over calibration
(e.g., problem of overfitting)

In the case of drought-related mortality “mechanisms”, we
may not know enough for a truly mechanistic representation
based on ecophysiological processes

Thus, “mechanistically inspired”, phenomenological
approaches may be preferable (as done here)

Summary and Conclusions %

A wide variety of models is available and has been used to
project impacts of climate change on forests — with very different
backgrounds and complexity: this is an asset

Models provide a nuanced view on regional impacts (e.g.
Switzerland along elevation), no “one size fits all”

Soil conditions are quite important, need more focus

Models consistently suggest onset of strong forest changes ca.
50-70 years after the start of climate change: =2040 (!)

Disturbances (not accounted for here except for drought) will
accelerate response

Drought-related mortality episodes can be predicted better by
a phenomenological approach than by ecophysiology

The tension between “simple is beautiful” vs. “complex is
needed” remains
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Thanks for listening!

Your questions, comments, concerns... ?



