

Viability analysis of ForCEEPS for management decision support

Malara M., Mathias J-D., Pichancourt J-B. and Jourdan M.

Silva INRAO UR LISC

Temperature change in the last 50 years

2011–2021 average vs 1956–1976 baseline -1.0 -0.5 -0.2 +0.2 +0.5 +1.0 +2.0 +4.0 °C

-1.8 -0.9 -0.4 +0.4 +0.9 +1.8 +3.6 +7.2 °F

FOREM 2024 – Marion Jourdan

Which affect :

- Forest functionning
- Its maintain
- ecosystems services

Which affect :

- Forest functionning
- Its maintain
- ecosystems services

Can management modulate this effect ?

Which affect :

- Forest functionning
- Its maintain
- ecosystems services

Can management modulate this effect ?

Which management for the future? Which tools to help the decision?

Forestry decision support tool in a context of multiple risks

- Forestry decision support tool in a context of multiple risks
- > Crucial points :
 - Forest dynamic model with management

- Forestry decision support tool in a context of multiple risks
- > Crucial points :
 - Forest dynamic model with management
 - Decision-making method
 - \rightarrow satisfactory silvicultural itinerary

- Forestry decision support tool in a context of multiple risks
- > Crucial points :
 - Forest dynamic model with management
 - Decision-making method
 - \rightarrow satisfactory silvicultural itinerary
 - Analysis method

- Forestry decision support tool in a context of multiple risks
- > Crucial points :
 - Forest dynamic model with management
 - Decision-making method
 - \rightarrow satisfactory silvicultural itinerary
 - Analysis method

- > Solutions :
 - Multi-agent mechanistic model
 - Control theory
 - + genetic algorithm
 - Multivariate analysis and classification

Method

Manage forest affected by climate change achieving objectives

Manage forest affected by climate change achieving objectives

1) System, state variables *x* and its dynamic *f*

Manage forest affected by climate change achieving objectives

1) System, state variables x and its dynamic f

2) Control *u* and its effect on the dynamic

Manage forest affected by climate change achieving objectives

1) System, state variables x and its dynamic f

2) Control *u* and its effect on the dynamic

3) Set of constraints K

1) System, state variables x and its dynamic f

ForCEEPS model > gap-model > multi-agent

1) System, state variables x and its dynamic f

Strong points:

- Management
- Climate effect :

ightarrow regeneration, growth, mortality

- Long-term simulation
- Calibration for French forest

inspired by Morin et al. (2021)

- 1) System, state variables x and its dynamic f
- 2) Control *u* and its effect on the dynamic

Actions associated with silvicultural itinerary

- ➢ Regeneration
- Thinning

- 1) System, state variables x and its dynamic f
- 2) Control u and its effect on the dynamic

Actions associated with silvicultural itinerary
➢ Regeneration → for further studies
➢ Thinning

- 1) System, state variables x and its dynamic f
- 2) Control *u* and its effect on the dynamic

Actions associated with silvicultural itinerary
➢ Regeneration → for further studies
➢ Thinning

1) Time btw thinning

2) Thinning type

∈ [5, 10, 15, 20, 30, 40]

3) Objective basal area

% ou Gobj ∈ [15, 20, 25, 30]

- 1) System, state variables x and its dynamic f
- 2) Control *u* and its effect on the dynamic
- 3) Set of constraints *K*

Economical/ecological objectives

- 1) System, state variables x and its dynamic f
- 2) Control *u* and its effect on the dynamic
- 3) Set of constraints *K*

Economical/ecological objectives

1) Production Cut wood> 3,1 m³/ha/an 2) Forest density Basal area > 10 m²/ha

3) Specific diversity Species number > 2

4) Structural diversity Gini of diameter ∈ [0,25 : 0,75] 5) Ecosystem health Mortality rate < 25%

Fix control problem

- Complex model
- Large set of control
 - > Over 80 years = between 4 and 16 interventions \rightarrow with 3 characteristics each
- > Exhaustive exploration impossible

Fix control problem

- Complex model
- Large set of control
 - > Over 80 years = between 4 and 16 interventions \rightarrow with 3 characteristics each

> Exhaustive exploration impossible

Chosen solution: genetic algorithm

Fix control problem

- Complex model
- Large set of control
 - > Over 80 years = between 4 and 16 interventions \rightarrow with 3 characteristics each
- > Exhaustive exploration impossible

Chosen solution: genetic algorithm

- > Identify management itinerary that respect the constraints
- > Translation of control problem into a genetic problem

- Individu = problems solution
 - Genome = management itinerary
 - Gene = control variables (interventions characteristic = 3)

- Individu = problems solution
 - Genome = management itinerary
 - ► Gene = control variables (interventions characteristic = 3)

- Individu = problems solution
 - Genome = management itinerary
 - ► Gene = control variables (interventions characteristic = 3)

- Classify solution
 - Respect of constraints

Application of the method

Case study

- « Forêt de Brun »
 - North-East of France
 - Sessile oak (*Quercus petraea*) and hornbeam (*Carpinus betulus*) forest

► Climatic data

- > 2 climatic scenarii : RCP 4.5 et 8.5
- ▶ 3 climatic models : MPI (CNRM and Hadgem)

Reduce dimension of constraints PCA of constraints

from Malara et al (in prep)

Impact of silvicultural itinerary on forest

Impact of silvicultural itinerary on forest

- Differences btw groups are weak
 - \rightarrow look at more contrasted itineraries

Impact of silvicultural itinerary on forest

Differences btw groups are weak
 → look at more contrasted itineraries

➢ Analysis on state variables
 → Loubna Taleb intership

Management methods respecting constraints

Management methods respecting constraints

- Period btw two thinning : 13 years
- Thinning intensity btw 25 and 30 %
- From homogenous thinning to dominant trees thinning
- Differences btw groups are weak
 → look at more contrasted itineraries

Discussion and perspectives

Discussion of results

- Differences in management itineraries are weak
 - \rightarrow "not enough restrictive" constraints, extreme cases to be studied
- Put into perspective with current management

Discussion of results

- Differences in management itineraries are weak
 - \rightarrow "not enough restrictive" constraints, extreme cases to be studied
- Put into perspective with current management

Methodological contributions

- Development of a new decision-making method
- Soon available on CAPSIS ?

- Differences in management itineraries are weak
 - \rightarrow "not enough restrictive" constraints, extreme cases to be studied
- Put into perspective with current management

Methodological contributions

- Development of a new decision-making method
- Soon available on CAPSIS ?

► Perspectives

- ► Go further in interpretation
- Add control variables: objective composition, control on regeneration,...

Thank you

Algorithme génétique

Analyse de sensibilité

Ninit = 500 Nsave = 5 Pmut = 0,1 Nrand = 10

from Malara et al (in prep)

Wood production	1	3	2
Basal area	2	1	3
Species number	1	3	2
Gini coefficient	3	1	1
Mortality rate	=	=	=
Period	=	=	=
Type of cut	1	3	2
Cut intensity	1	3	3