

Characterization of the quality of roundwood automatically: Recent results and perspectives

V.-T. NGUYEN, T. CONSTANT, F.COLIN, B.KERAUTRET, I. DEBLED-RENNESSON, A. PIBOULE

Which economic stakes about wood quality?

▶ Log selling price depends on the presence of defects

Price of Oak Logs of Decreasing quality

Classe	Longueur	Diamètre	Défaut	Prix
A	3m	>=55cm	Sans défaut	>= 560€
В	3m	>=50cm	Peu défauts	>= 345€
C	3m	>=35cm	Avec défauts	180€
D	1.5m		Beaucoup défauts	9€

From: Forêts de France (2017)

- Factors
 - Diameter → Volume → Global shape (Taper, Curvature)
 - ▶ Log Ends: Ring Width, Colour, Eccentricity, Rot,....
 - Number of surface defects / meter / type.

Surface defects:

Which economic stakes about Wood Quality?

To optimize from quality information the the first transformation

Horns down Sawing = standard optimization

Optimization on global shape

Optimization from shape and knots

Recovery Value + 21%

269 Logs Norway Spruce and Scots Pine

Fredriksson 2014

Recovery Value + 13%

Silva X-Ray scanner =

Geometrical model of the inne

thod

g coming from an X-Ray Scan

Sìlva 60 -80% of Internal defects are detectable from outside

Is it possible to characterize the inner part from outside automatically?

- Perhaps....but Several steps must be lifted
- To describe the bark surface with enough details:
 - T-LiDAR = Reference Method
 Providing detailed information on standing trees
- To detect the defect on bark
- To identify the defect type
- To measure its characteristics

3 Objectives of Van-Tho's PhD

To link external features of the defect to inner ones ANR Project WoodSeer?

Detection of the defect on the bark

A tricky objective which needs a reference surface

(b) Cylindrical based method

Algorithm for segmenting defect areas

Results

Results about defect detection

Metrics

Precision
$$P = \frac{TP}{TP + FP}$$

Recall
$$R = \frac{TP}{TP + FN}$$

F1 value
$$F_1 = 2 \frac{PR}{P+R}$$

	Proposed method			Cylbased method[12]		
Log	Prec ¹	Recall	F1	Prec	Recall	F1
Fir 1	0.747	0.769	0.757	0.137	0.937	0.238
Fir 2	0.673	0.775	0.719	0.353	0.452	0.395
Wild cherry 1	0.696	0.765	0.728	0.683	0.512	0.584
Wild cher $F_1 = 2 \frac{PR}{P+R}$	0.846	0.711	0.771	0.661	0.822	0.732
Red oak i	0.749	0.742	0.744	0.479	0.444	0.459
Red oak 2	0.428	0.833	0.564	0.061	0.400	0.104
Beech	0.670	0.604	0.634	0.360	0.289	0.320
Birch	0.733	0.756	0.744	0.607	0.421	0.496
Elm	0.694	0.755	0.721	0.494	0.309	0.378
Wst ²	0.247	0.741	0.370	0.057	0.463	0.100
Overall	0.685	0.740	0.710	0.289	0.563	0.380

Classification of defects

- ▶ Five Classes
 - Branches (sequential and epicormic)
 - Branch scars
 - Burl
 - Small defects = (Picot, Sphéroblaste, Bud Cluster, bud)
 - Bark

Classification of defects

- ▶ 15 Shape Descriptors
 - Species
 - Ratio between the nb of points of the defect and the volume of its bounding box
 - Hu invariant moments
 - Ratio between eigenvalues
 - Angle between trunk axis and 3rd eigen vector

Results about classification

Classification Results

Characterization of the defect

- To compare with human characterizationis a difficult task
- An example about the width of the knot scar (w)

Geometrical Model

Data + Result

Position along the periphery

Characterization of defect

► A difficulty:

the definition of a defect area is not exactly the same between a human and algorithms.

Characterization of defect

▶ 141 Defects

- Overestimation of dimensions by algorithms
- Encouraging results
- Must be improved

Project ANR: WoodSeer

Task 1

- 4 species x 10 trees
- → Min 100 defects by species
- Diversification of data Acquisition True shape scanner
 - ▶ Handheld Cameras
- To provide a dataset with outer and inner 3D data of the same defects (X-Ray scans)
- Generation of Virtual Data to feed learning dataset for Deep Learning approaches

Task 2

- To improve the segmentation and classification steps
 - For outer surface data
 - For inner volume data
 - Deep Learning with geometrical cosntraints

Task 3

- To connect Outer and Inner part of the defect
 - By Deep Learning
 - By statistical model on characterisitics

Conclusions

- With respect to initial objectives :
 - Description of Trunk surface : T-LiDAR relevant but time costly
 - Detection of defects: Rather efficient method available
 - Classification of defects: Improvement needed
 - More data for learning dataset
 - To refine the classes; Type +Size
 - Characterization of defects
 - ▶ Human-like characterization by algorithm difficult but not necessary for IA approaches
 - Connection to inner characteristics: To do

MERCI DE VOTRE ATTENTION

