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Reminder: what is self-thinning?

Due to competion, as a forest grows, the number of trees it contains
decreases. This phenomenon is called self-thinning.

In 1933, Reineke remarked that the plot of the number of trees per

surface unit versus the average diameter of trees in a log-log scale
seemed to follow a straight line. :5 logN =k —alogD

This remark is mainly for monospecific and even-aged stands.

He used that observation to build a Stand Density Index (SDI)
allowing to compare stands at different development stages:

SDI = N(l%)a (D in inches)

Curtis (1970) used this idea to build various density indices,
including a Relative Density Index: RDI = N/N

max
Where N is the current stand density and N,,,,, the theoretical maximal

number of trees for a stand at the same development stage.

In fact, the previous formulations are not for the self-thinning trajectory
but only for its limit: the maximum density line.
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Real self-thinning trajectories

The trajectory followed by real stands (in the log-log space) is Oak - trials with different inital densities
not a straight line (Hozumi, 1977, 1980, 1983), but a curve o
that tends to a straight line (Kurinobu et Miyaura, 2011). B
A first model has been proposed by Nilson (1973): g
25+k) 2 _ % S

N—N25(D+k) (D en cm) £
Where N,5 is the number of trees in the stand E 8 _ Plot o ooo mc o
at the stage D = 25cm. : f AP &“%ﬂ%
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If k = 0, this is almost Reineke’s SDI. & a4 W
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In 2016, Ningre, Ottorini and Le Goff built a parabolic model & | R
defined by two contact points, one on each of the two 5 , . M 2 5
asymptotes. Between those points, the curve is a piece of Cq (em)

parabola which slope at each contact points is equal to the

. Data from an experiment at Lyons-la-Forét
slope of the corresponding asymptote.

(Northern France)



Kurinobu and Miyaura’s approach

In 2006, Kurinobu and Miyaura proposed an approach based y = log Nt
on the Euclidian distance L between a point of the trajectory
and the Maximum Density Line (in log-log scale):

Ay
r=a = bi[1 — byexp(—b3L)] — 2.0

where by, b, and b3 are to be estimated. The quantities Ax et Ay respectively represent the evolution
of x =log D and of y = log N between two successive dates of observation.

In 2011, Kurinobu and Miyaura prefer a more simple expression :

_ Ly _ ;
r—Ax—a-exp(—c- )

where a and ¢ are parameters to be estimated.



Remarks about Kurinobu and Miyaura’s approach

Kurinobu and Miyaura use the distance (in the log-log plane) between a y = log N*
point belonging to the trajectory and the distance L of this point to the

maximum density line.

Hence they use the Euclidian distance between two points in the plane.

The distance between the points P; = (D{, N;) and P, = (D,, N,) is:
2 2
d(Py, P,) = /(log D; —log D;)? + (log N; — log N,)? = \/(logg—;) + (logx—;)

Hard to understand what that distance really means!

y = log N’
:> Idea: Define L as the length of the vertical segment
from the trajectory point to the maximum density line.

We obtain: L = Y, — V = logN’;"vax = —logRDI

i _ 4y _ 4y
:> Another suggestion: replace r = o by r = ™

to work with continuous time
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Generalised approach

d
We study the differential equation : d_y =—a- f(L)
X

where f is a function that does not depend to the maximum density
line parameters and that additionnally has the following properties:

* fisdefined on R™;
« f(0) = 1; f is continuous and decreasing, Llirp f(L) = 0;

« [P FLYAL < +oo.

y = log N/

It can then be shown that the curve that represents the solution of the differential equation:

* Is decreasing ;

* Does not admit an inflexion points;

e Admits an horizontal asymptote at —oo ;

* Admits the maximum density line as an asymptote at + o0 ;
* |slocated under its asymptotes.

:> The curve looks like an hyperbole.



llustration of the modlﬂed approach

y=b—ax

Yo

In order to explicitly control the curvature of the solution, we define
the g function as g(t) = f(c/A - t) where ¢ > 0 is another
parameter and A > 0 a normalisation constant.

The constant A is chosen so that ¢ becomes the vertical distance
between the intersection of the asymptotes to the curve.

v
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Solution of the differential equation

a

. : . L
If (xg, Vo) is a known point of the trajectory: —bh—ax — . h1 i SV
0, Yo y=b—ax—(c/A)-h h v v (x — xp)

With Ly = b — axg — y,

b—ax —
If xg > —,y, = lim y(x): y=b—ax—(c/1)-h1 <a — yo)
X——00 c/A

Where :

. _ dat .

h(t) - 1—g(t) )
+ a= lim (h(D) - 0
« 1=h"1a).

The normalisation constant A is defined so that the ¢ parameter becomes the length of the vertical distance
between the curve and the intersection of its asymptotes.

To each g function is associated a normalised function g, defined as g,(t) = g(At),
with associated h and a,. We have then 1, = hgl(ay) = 1.



Some particular cases

_ 1 b—ax+vyy,—+(b—ax —vy,)2 + 4(c/1)? A=1
IO=57 [ ) = Yo = , ¥0)? + 4(c/2)

Hyperbolic model

_ b —ax —
gt)=et |:> y=b—ax—(c//1)-log<1+exp< /7 yo)) A =log?2
Nilson-Kurinobu-Miyaura model (“NKM”)

g =1+ (et — 1) log(1 — e t) |:> y=b—ax+ (c/A) - log<1 — exp <— exp <b — ?;CA_ 3’0)))

A= —log(1—e™1) Poisson model
( Y = Yo if x < xg
gy =1-4F ifo<t<4 ) b—y, —ax\"
gt)=0 otherwise |:> VY =Yoo~z c/A— A if xo = x =2
L y=b—ax if x = xq
Xy = 19_3"’—_46/’1, X, = b_yo—HC/A, 1=1  Parabolic model (Ningre, Ottorini & Le Goff, 2016)
a a
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Graphical representation

Normalised functions gg

Models comparison for a given set of parameters

Model

— Hyperbola

— NKM
Poisson
Parabola

Model

— Hyperbola

— NKM
Poisson
Parabola

Despite differences between the g, functions, the resulting trajectories look very similar.




Application to simulated data

We define a 2-D toric space,
Ny initial points are distributed on it ;
e All these point “grow” at the same speed;

e Assoon as two circles touch each other, one is randomly
eliminated (Bernoulli sampling);

e Until only one circle remains.

We study the couples N-D (Remaining circles — current diameter).

Initial points are distributed according different spatial structures
(unstructured, aggregated, regularised).
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Comparaison of several spatial structures

Unstructured Regularised
’ Here, N, = 2000
- * Trajectories have expected shapes
) (hyperboloid)
‘ o * The asymptotes corresponding to the
° N maximum density lines are very comparable
Aggregated Comparison of simulations with different spatial structures
o « Main differences are linked to the curvature
> 8 \‘m
% e . N
. ¥ When the points begin to be
_ | et « in competition ».
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Fitting of models to the trajectories

Ny is known so it is not estimated. Parameters a, b et c are estimated.

Unstructured

\\
A
Model
— Hyperbola
— NKM
Poisson
Parabola
T T T 1 T 1 1 T
0.01 0.05 0.10 0.50 1.00 5.00 10.00 50.00
Rayen

Regularised

&

Model
— Hyperbola
— NKM
Poisson
Parabola
T T T 1 T 1 1 T
0.01 0.05 0.10 0.50 1.00 5.00 10.00 50.00
Rayen

* Inall cases, no problem to fit the models.

500

Aggregated

™,

b
‘\\
Model
— Hyperbola
— NKM
Poisson
Parabola
T T T T T T T T
0.01 0.05 0.10 0.50 1.00 5.00 10.00 50.00
Rayon

* For a given simulation, estimated parameters from a model to the others are very close to each other;

:> The evaluated models are hardly distinguishable from each others.

In fact, they differ by the speed at which then tend to the asymptotes (0, S or e~ 1kxl according to the model)




Application to forestry data

All the data used in this presentation have been compiled by Francois Ningre (Inrae Nancy)
Trials on Douglas-fir (Pseudotsuga menziesii (Mirb.) ) with different initial plantation densities

(GIS-Coop and Lerfob networks)
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Poisson model Parabolic model (Ningre - Ottorini - Le Goff)
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Comparison of Douglas-fir models
for a same initial density

Models comparison for different initial densities
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:> Same remarks than with simulated data:

* No difficulty to fit the curves;

* Models are hardly distinguishable from each others:
parameters a, b and c are quite the same from one
model to the other.

According to the situation (real or simulated data,

species or spatial structure), the best model is not

always the same.

None of the tested models appears to be really better
than the others.

For a given model and fixed a, b and c parameters,
curves with different y, are just translated from each
other according to a vector of slope —a.



Oak-Beech comparison at Lyons-La-Forét

Pedo-climatic conditions are comparable between the following monospecific Oak and Beech trials.

Real data Comparison for a same initial density

Fitting of Oak data and on Beech data

. Comparaison of models for Oak and for Beech at the same initial density
of Lyons-La-Forét - NKM model

o
Q|
© | =====mm=mmacmemssoomrooeoon o .—;—‘ ety .
Species © T Spece
= — Oak n T — pee
= — Beeach — Beech
s o
o = S
o T %
8 | =t
o £ ke]
= 8
wn =
z © 8
o _|
o i 8
b=
(=]
(3]
° 9 Model
o _
g Q —— Hyperbolic
=== N-K-M
e S TRTTTITNTRULA. U I N Poisson
g o | | Parabolic (Ningre - Ottorini - Le Goff)
g
T T T h | | l l
10 20 50 ° N N N
Cg *

:> In terms of development stage, Oak is affected latter, but stronger, than Beech by intraspecific competition.
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Application to growing space studies

Ningre et al. (2019) have used the same data to establish Curves obtained from fitted self-thinning equations
the curve of space needed by individuals of each species. Available space with species

o
Q 4
(b) Mean growing space per tree (s) Species
— Oak at maximum density ' — Qak
40 —— Beech at maximum density )/ Douglas fir
- - - Oak at mortality onset ' Ash
- - - Beech at mortality onset K PR —— Beech
‘ i
30 o 3
_ ) ! @
g f“ / E E -
- P
E 20 ’ =
» ‘ E -
< 5 ] -
10 T Initial density
— 1000 stems/ha
- 2500 stems/ha
O —]
0 - - I I I I I I I
T T T T T T T 0 5 10 15 20 25 30
0 5 10 15 20 25 30 Dg (cm)
Dg (cm) Although the point of view is not exactly the same,

the results are comparable.
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Conclusion

The modified Kurinobu and Miyaura approach allows to unify the models available in the literacy.

It depends on 4 parameters with an ecological interpretation :

* |Initial density of the stand N ;

* Slope a of the the Maximum Density Line: characteristic of assimilation apparatus;
* Intercept b of the Maximum Density Line: plot fertility ;

e Parameter of curvature c : sensitivity to competition.

The models differ by the choice of the g function. As soon as these functions respect general properties,
the corresponding models give very comparable results.

They mainly differ by the speed at which the trajectory tends to its asymptotes

The g function can be interpreted as the evolution of competition pressure with stand density
(measured with the RDI).

The obtained trajectories are a sequence of equilibriums between the stand density and its development stage.
The growing speed is not modelled.



Normalised functions gy

1.0

— Hyperbola

— NKM

—— Poisson
Parabola

Perspectives =

0.8
|

06

Is there an ecological reasoning that would lead to a particular g function?

0.4

Can the modified Kurinobu and Miyaura approach be adapted to plurispecific and/or uneven-aged stands?

[Work in progress]

Thank you for attention
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