LE MODÈLE PDG LIGHT POUR SIMULER LA CROISSANCE FORESTIÈRE EN MÉLANGE À PARTIR DU MODÈLE À BASE ÉCO-PHYSIOLOGIQUE CASTANEA

Séminaire FOREM 2023 - Grenoble

Camille ROUET^{1,2,3}, Xavier MORIN⁴, Bruno FADY¹, Hendrik DAVI¹

¹INRAE, UR 629 Écologie des Forêts Méditerranéennes, 84000 Avignon, France ²ADEME, 49000 Angers , France ³ONF, 75570 Paris, France ⁴CNRS, CEFE, Centre for Functional and Evolutionary Ecology, 34293 Montpellier 5, France

INRA@

> What about drought resistance ?

\rightarrow Evidence that forest tree diversity increases resistance to drought is unclear

INRA@

> Our understanding of mixed forest functioning

We need finer knowledge on the functioning of mixed forest (species-soil-climate combination)

+

It is costly & long to get data about forests

→ modeling of mixed forests

> The modeling of mixed forests

Table 3 Forest growth models considered within this review and their spatial and temporal structure (1 basic spatial unit; 2 shortest time step of of

					- C. W. A. M. B. M. M. M.
No	Name	Author(s)	Туре	Spatial structure ¹	No. 19 CA
1	3-PG	Landsberg and Waring (1997)	Process based	Stand or cohort	2333
2	4C	Forrester and Tang (in press) Lasch et al. (2005), pers. comm	Process based	Cohort	2 6.14
3	AMORPHYS (PIPESTEM)	(2014) Valentine et al. (2000),	Hybrid	Individual	A Content Vite
4	ANAFORE	Valentine et al. (1997) Deckmyn et al. (2008)	Brocass based	Cohort	ELSE
4 5	BALANCE	Grote and Pretzsch (2002),	Process based	Individual	LLUL
		Rötzer et al. (2010)			
6	BIOME-BGC	Pietsch et al. (2003)	Process based	Stand	
7	BWIN PRO, TreeGrOSS	Albrecht et al. (2011), Hansen and Nagel (2014)	Empirical	Individual	
8	CABALA	Battaglia et al. (2004)	Process based	Cohort	Review
9	CASTANEA	Dufrene et al. (2005)	Process based	Stand	
10	CO2FIX V.2	Masera et al. (2003)	Empirical	Cohort	D
11	COMMIX	Bartelink (2000)	Process based	Individual	Ret
12	DF.HGS	Weiskittel et al. (2010)	Hybrid	Individual	
13	EFIMOD	Chertov et al. (1999)	Hybrid Drogoss based	Individual	
14	EMILIION	BOSC (2000) Kellomäki and Maisanen	Process based	Individual	
15	FINNFOR	(1997) Kramer et al. (2002)	PIOCESS Daseu	COHOIT	mo
16	FORCUM	(1997), Klamer et al. (2002) Rugmann (1996)	Process based	Cohort	1110
17	FORCYTE	Kimmins and Scoullar (1989).	Hybrid	Stand	
		Kimmins et al. (1990b)			
18	FORCYTE 11	Kimmins et al. (1990a)	Hybrid	Stand	
19	FORECAST	Kimmins et al. (1999)	Hybrid	Individual	
20	FOREST v5.1	Schwalm and Ek (2004)	Process based	Individual	Hans P
21	FOREST-BGC	Running and Coughlan (1988).	Process based	Stand	
	FORCEM	Running and Gower (1991)	Designed based	to all to date and	David
22	FORGENI FORCEO (SIMIE)	Kidiller et al. (2008) Van der Voet and Mohren	Process based	Stand	Day
23	TOKORO (-SWIT)	(1994) Van Wijk et al. (2001)	riocess based	Stand	nour
24	FORMIND	Köhler and Huth (1998). Bohn et al. (2014).	Process based	Individual	Year
25	FORMIX	Bossel and Krieger (1994)	Process based	Cohort	Day
26	FORSKA	Prentice et al. (1993)	Process based	Cohort	Day
27	FORSPACE	Kramer et al. (2003)	Process based	Cohort	Day
28	FORUG	Verbeeck et al. (2006), Verbeeck et al. (2008)	Process based	Cohort	hour
29	FULCAM	Waterworth et al. (2007)	Hybrid	Stand	Year
30	FVS	Wykoff (1990), Crookston and Dixon (2005)	Empirical	Individual	5 Year
31	G-DAY	Comins and McMurtrie (1993), Eliasson et al. (2005)	Process based	Stand	Week
32	GOTILWA+	Gracia et al. (2002), Kramer et al. (2002)	Process based	Individual	Hour
33	Hybrid	Friend et al. (1997)	Process based	Individual	Day
34	LIGNUM	Perttunen et al. (1998)	Process based	Individual	Year
35	MAESTRO/MAESPA	Wang and Jarvis (1990), Baldwin et al. (2001), Duursma	Process based	Individual	hour
76	MCM	anu Mediyn (2012) Belele et al. 2012, UA (2014)	Empirical	Inductional	Marr
30	MOSES	BOKAIO EL AL, 2013, UA (2014)	Empirical	Individual	5 Verr
38	N N	Palabi et al. (2008)	Empirical	Individual	Vear
30	NN	Pukkala et al. (2000)	Empirical	Individual	5 Vear
40	NN	Monserud and Sterba (1996)	Empirical	Individual	5 Year
41	PICUS v1 3	Seidl et al. (2005)	Hybrid	Individual	Month
42 43	PIPEQUAL PNET (-CN, -DAY)				Day Month
44	SECRETS	Rovio	wof		Hour
45	SILVA		Hybrid	Individual	5 Year
46		aroot are			Hour
4/					- Year
40 40	TREE-BCC		Process based	Individual	- Tear
50	TREEDYN3	Bossel (1996), Kramer et al.			Dav
					,
51	TREEMIG	LISCHKE ET AL (2006)	Process based	cohort	Year
52	TRIPLEX	Peng et al. (2002)	Hybrid	Stand	Month
53	WOODPAM	Peringer et al. (2013)	Process based	Stand	Month
54	YIELD-SAFE	Van der Werf et al. (2007)	Process based	Individual	Day

iew

Ecological Modelling Volume 313, 10 October 2015, Pages 276-292

epresentation of species mixing in forest growth odels. A review and perspective

ns Pretzsch ª 은 쩓, David I. Forrester ^b, Thomas Rötzer ª

INRA

> The modeling of mixed forests

Table 3 Forest growth models considered within this review and their spatial and temporal structure (1 basic spatial unit; 2 shortest time step of

No	Name	Author(s)	Туре	Spatial structure ¹
1	3-PG	Landsberg and Waring (1997)	Process based	Stand or cohort
-	15	Forrester and Tang (in press)	Designed by the d	Cohert
2	40	(2014) Lasch et al. (2005), pers. comm	Process based	Conort
3	AMORPHYS (PIPESTEM)	Valentine et al. (2000)	Hybrid	Individual
		Valentine et al. (1997)		
4	ANAFORE	Deckmyn et al. (2008)	Process based	Cohort
5	BALANCE	Grote and Pretzsch (2002), Bötzer et al. (2010)	Process based	Individual
	BIOME-BGC	RULZEF ET AL (2010) Pietsch et al (2003)	Process based	Stand
;	BWIN PRO, TreeGrOSS	Albrecht et al. (2011). Hansen	Empirical	Individual
		and Nagel (2014)		
3	CABALA	Battaglia et al. (2004)	Process based	Cohort
	CASTANEA	Dufrene et al. (2005)	Process based	Stand
1	CO2FIX V.2 COMMIX	Masera et al. (2003) Bartelink (2000)	Empifical Process based	Conort
2	DEHGS	Weiskittel et al (2010)	Hybrid	Individual
3	EFIMOD	Chertov et al. (1999)	Hybrid	Individual
4	EMILIION	Bosc (2000)	Process based	Individual
5	FINNFOR	Kellomäki and Vaisanen	Process based	Cohort
-	FOR CLUB	(1997), Kramer et al. (2002)	Provide the set	Coloret
5	FORCUTE	Bugmann (1996) Kimmins and Scoullar (1989)	Process based Hybrid	CONOT
·	TONCTIE	Kimmins et al. (1990b)	nyonu	Statiu
8	FORCYTE 11	Kimmins et al. (1990a)	Hybrid	Stand
9	FORECAST	Kimmins et al. (1999)	Hybrid	Individual
0	FOREST v5.1	Schwalm and Ek (2004)	Process based	Individual
1	FOREST-BGC	Running and Coughlan (1988),	Process based	Stand
2	FORGEM	Kunning and GOWEF (1991) Kramer et al. (2008)	Process based	Individual
3	FORGRO (-SWIF)	Van der Voet and Mohren	Process based	Stand
		(1994), Van Wijk et al. (2001)		
ł	FORMIND	Köhler and Huth (1998), Bohn	Process based	Individual
		et al. (2014)		
	FORMIX	Bossel and Krieger (1994)	Process based	Cohort
7	FORSPACE	Kramer et al. (1993)	Process based	Cohort
3	FORUG	Verbeeck et al. (2006).	Process based	Cohort
		Verbeeck et al. (2008)		
)	FULCAM	Waterworth et al. (2007)	Hybrid	Stand
	FVS	Wykoff (1990), Crookston and	Empirical	Individual
	C-DAV	Comins and McMurtrie (1993)	Process based	Stand
	5-041	Eliasson et al. (2005)	riocess based	Stanu
	GOTILWA+	Gracia et al. (2002), Kramer	Process based	Individual
		et al. (2002)		
	Hybrid	Friend et al. (1997)	Process based	Individual
	LIGNUM MAESTRO/MAESPA	Pertfunen et al. (1998) Wang and Jarvis (1990)	Process based	Individual
·	MALSTROJMALSPA	Raldwin et al. (2001). Duursma	FIOLESS DESER	murvidual
		and Medlyn (2012)		
5	MGM	Bokalo et al., 2013, UA (2014)	Empirical	Individual
	MOSES	Hasenauer (1994)	Empirical	Individual
	N.N.	Palahi et al. (2008)	Empirical	Individual
,	N.N.	PUKKAIA et al. (2009) Monserud and Sterba (1996)	Empirical	Individual
	PICUS v1.3	Seidl et al. (2005)	Hybrid	Individual
	PIPEQUAL			
	PNET (-CN, -DAY)	Aber and Federer (1992), Aber		
	BEERETS	■ 1 - 1 - 1 - 1		
	SILVA	Pretzsch et al. (2002)	Hybrid	
	SIMWAL	palandier et al. 1000)	Prod is used	Individual
	SORTIE/			
	TRAGIC			
	TREE-BGC	Korol et al. (1995)		
	KEEDYN3			
	TREEMIG	LISCHKE ET al. (2005)	Process based	Cohort
	TRIPLEX	Peng et al. (2002)	Hybrid	Stand
)	WOODPAM	Peringer et al. (2013)	Process based	Stand
4	YIELD-SAFE	Van der Werf et al. (2007)	Process based	Individual

h/Day

Ecological Modelling Volume 313, 10 October 2015, Pages 276-292

presentation of species mixing in forest growth odels. A review and perspective

Pretzsch ^a ightarrow ⊠, David I. Forrester ^b, Thomas Rötzer ^a

but, too few of them are :

- process-based -
- at individual scale
- including tree interactions -

INRA

> The modeling of mixed forests

PDG Light: a new process-based model to study mixed forests

→ How are inter-specific interactions affected by climate, density and stand structure ?

INRAe

> PDG Light: a new process-based model to study mixed forests

> PDG Light: a new process-based model to study mixed forests

> PDG Light: a new process-based model to study mixed forests

11th May 2023 / Camille Rouet

12

> Modeling tree interactions in PDG Light

13

> Modeling tree interactions in PDG Light

> Modeling tree interactions in PDG Light

Competition for light

> Modeling tree interactions in PDG Light

Competition for light

Complementarity in light use

> PDG Light: a new process-based model to study mixed forests

Input

17

> PDG Light: a new process-based model to study mixed forests

> The GMAP monitoring network for mixed forests

Sites from the French Alps to the Mediterranean Sea ...

... composed of triplets

- Beech plots
- Fir plots
- Beech and Fir mixed plots

Coordinator : Xavier Morin, CNRS CEFE

INRA

> A demonstration of PDG Light simulation (1/2)

Productivity ?→ Gross Primary Production (GPP)Sensibility to drought ?→ minimal Relative Extractable Water (REW)

> A demonstration of PDG Light simulation (1/2)

Beech-Fir mix vs pure Beech : 1 year simulation

> A demonstration of PDG Light simulation (1/2)

Beech-Fir mix vs pure Beech : 1 year simulation

> A demonstration of PDG Light simulation (2/2)

Beech-Fir mix vs pure Beech : 10 year simulation

> A demonstration of PDG Light simulation (2/2)

Beech-Fir mix vs pure Beech : 10 year simulation

Productivity ? \rightarrow Gross Primary Production (GPP)Sensibility to drought ? \rightarrow minimal Relative Extractable Water (REW)

Productivity ? \rightarrow Gross Primary Production (GPP)Sensibility to drought ? \rightarrow minimal Relative Extractable Water (REW)

INRAe

Productivity ?→ Gross Primary Production (GPP)Sensibility to drought ?→ minimal Relative Extractable Water (REW)

INRA@

Productivity ?→ Gross Primary Production (GPP)Sensibility to drought ?→ minimal Relative Extractable Water (REW)

INRAe

Productivity ? \rightarrow Gross Primary Production (GPP)Sensibility to drought ? \rightarrow minimal Relative Extractable Water (REW)

INRA@

> In conclusion

Thank you for your attention !

camille.rouet@pm.me

> References

- Brockerhoff, E.G., Barbaro, L., Castagneyrol, B., Forrester, D.I., Gardiner, B., González-Olabarria, J.R., Lyver, P.O., Meurisse, N., Oxbrough, A., Taki, H., Thompson, I.D., van der Plas, F., Jactel, H., 2017. Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodivers Conserv 26, 3005–3035. https://doi.org/10.1007/s10531-017-1453-2
- Dufrêne, E., Davi, H., François, C., Maire, G. le, Dantec, V.L., Granier, A., 2005. Modelling carbon and water cycles in a beech forest. Part I: Model description and uncertainty analysis on modelled NEE. Ecological Modelling 185, 407–436. https://doi.org/10/fjnfgr
- Forrester, D.I., Bauhus, J., 2016. A Review of Processes Behind Diversity—Productivity Relationships in Forests. Curr Forestry Rep 2, 45–61. https://doi.org/10.1007/s40725-016-0031-2
- Grossiord, C., 2018. Having the right neighbors: how tree species diversity modulates drought impacts on forests. New Phytologist 228, 42–49. https://doi.org/10.1111/nph.15667
- Grossiord, C., Granier, A., Gessler, A., Jucker, T., Bonal, D., 2014a. Does Drought Influence the Relationship Between Biodiversity and Ecosystem Functioning in Boreal Forests? Ecosystems 17, 394–404. https://doi.org/10.1007/s10021-013-9729-1
- Grossiord, C., Granier, A., Ratcliffe, S., Bouriaud, O., Bruelheide, H., Chećko, E., Forrester, D.I., Dawud, S.M., Finér, L., Pollastrini, M., Scherer-Lorenzen, M., Valladares, F., Bonal, D., Gessler, A., 2014b. Tree diversity does not always improve resistance of forest ecosystems to drought. PNAS 111, 14812–14815. https://doi.org/10.1073/pnas.1411970111
- Jactel, H., Bauhus, J., Boberg, J., Bonal, D., Castagneyrol, B., Gardiner, B., Gonzalez-Olabarria, J.R., Koricheva, J., Meurisse, N., Brockerhoff, E.G., 2017. Tree Diversity Drives Forest Stand Resistance to Natural Disturbances. Curr Forestry Rep 3, 223–243. https://doi.org/10.1007/s40725-017-0064-1
- Jactel, H., Gritti, E.S., Drössler, L., Forrester, D.I., Mason, W.L., Morin, X., Pretzsch, H., Castagneyrol, B., 2018. Positive biodiversity-productivity relationships in forests: climate matters. Biology Letters 14, 20170747. https://doi.org/10.1098/rsbl.2017.0747
- Jourdan, M., Kunstler, G., Morin, X., 2020. How neighbourhood interactions control the temporal stability and resilience to drought of trees in mountain forests. Journal of Ecology 108, 666–677. https://doi.org/10.1111/1365-2745.13294
- Jourdan, M., Lebourgeois, F., Morin, X., 2019. The effect of tree diversity on the resistance and recovery of forest stands in the French Alps may depend on species differences in hydraulic features. Forest Ecology and Management 450, 117486. https://doi.org/10.1016/j.foreco.2019.117486
- Oddou-Muratorio, S., Davi, H., 2014. Simulating local adaptation to climate of forest trees with a Physio-Demo-Genetics model. Evol Appl 7, 453–467. https://doi.org/10.1111/eva.12143
- Pretzsch, H., Forrester, D.I., Rötzer, T., 2015. Representation of species mixing in forest growth models. A review and perspective. Ecological Modelling 313, 276–292. https://doi.org/10.1016/j.ecolmodel.2015.06.044
- Toïgo, M., Vallet, P., Perot, T., Bontemps, J.-D., Piedallu, C., Courbaud, B., 2015. Overyielding in mixed forests decreases with site productivity. J Ecol 103, 502–512. https://doi.org/10.1111/1365-2745.12353
- Zhang, Y., Chen, H.Y.H., Reich, P.B., 2012. Forest productivity increases with evenness, species richness and trait variation: a global meta-analysis. Journal of Ecology 100, 742–749. https://doi.org/10.1111/j.1365-2745.2011.01944.x

INRA

