

Predicting internal defects from 3D data: an approach is emerging...

... some results gained in ANR WoodSeer (2019-2024)

Thiéry Constant - UMR Silva - Project coordinator

> Why be interested in the quality of trees?

In forestry: a constant financial stake in the hands of experts who combine volume shape and the presence of singularities to grade

D'après revue Forêts-de-France n° 585

Why be interested in the quality of trees?

In forestry: a constant financial stake in the hands of experts who combine volume shape and the presence of singularities to grade

Why be interested in the quality of trees?

In the industry: a financial gain on products of approximately 15% by optimizing the transformation on quality with the use of industrial X-ray scanners (2 in France) but very heavy investments.

ANR WoodSeer: Establishing the link between the external characteristics of a singularity and its internal impact via Al

Geometrical model of branchiness obtained from X-ray CT Scanner

External description and segmented singularities from terrestrial Lidar

INRAe

p. 6

1st Challenge: detect singularities on the surface of the bark

> Avalaible data: scans 3D TLS et vérité terrain sur la localisation (voire le type des singularités)

1st Challenge: detect singularities on the surface of the bark

- > State-of-art Reference : PhD Van-Tho Nguyen, (2018)
- > Geometrical method based on the analysis of the local roughness and automated relief thresholding

> 1st step

Accumulation

Centerline (red)

➤ 2^d step

Patch Delta distance

Delta distance thresholding

اب. _ا

New method proposed by F. Delconte (PhD Candidate) based on Deep Learning

New method proposed by F. Delconte (PhD Candidate) based on Deep Learning

➤ Via CNN architecture U-Net slighty modified

T.Constant et al.

Visual comparison of both methods from Nguyen (2017) and Delconte (2022)

Comparison of three methods

Nguyen (2017)

log as a cylinder*

Delconte (2022)

Data IN	Method 2017			Methode Cylinder			Methode 2022		
	precision	recall	F1	precision	recall	F1	precision	recall	F1
Fir1	0.747	0.769	0.757	0.137	0.937	0.238	0.746	0.857	0.797
Fir2	0.673	0.775	0.719	0.353	0.452	0.395	0.792	0.801	0.795
WildCherry1	0.696	0.765	0.728	0.683	0.512	0.584	0.757	0.881	0.813
WildCherry2	0.846	0.711	0.771	0.661	0.822	0.732	0.799	0.955	0.870
Redoak1	0.749	0.742	0.744	0.479	0.444	0.459	0.866	0.696	0.770
Redoak2	0.428	0.833	0.564	0.061	0.400	0.104	0.730	0.428	0.538
Beech	0.670	0.604	0.634	0.360	0.289	0.320	0.863	0.591	0.701
Birch	0.733	0.756	0.744	0.607	0.421	0.496	0.774	0.726	0.748
Elm	0.694	0.755	0.721	0.494	0.309	0.378	0.881	0.642	0.741
WildServiceTree	0.247	0.741	0.370	0.057	0.463	0.100	0.856	0.504	0.633
Total	0.685	0.740	0.710	0.289	0.563	0.380	0.793	0.789	0.790

^{*} Cylinder fitting from 3D points -> 1 unique reference radius for computation of delta-distances

> 2^d challenge: identify the type of singularity

> State-of-art method based on classification by Random Forest osf shape descriptors (Nguyen et al. 2021)

- Branch
- Branch scar
- Burl
- Small defects (picot, cluster fo buds, sphaeroblast...)
- Bark

> 2^d challenge: identify the type of singularity

- ➤ New method proposed by F. Delconte et al. (2024)
 - Addition of a shape descriptor the LIP signature generalised in 3D (i.e. Largest Interception and Projection[Nguyen et Nguyen, 2018])

Resultts

	Ec (11)	Bra (23)	Cic (48)	Bro (28)	$\mathbf{pDef}\ (23)$	w.AVG
V-T[38] (17)	0.76	0.77	0.83	0.64	0.84	0.78
V-T (3) + LIP (11)	0.81	0.85	0.82	0.66	0.89	0.80

→ Gain in identification of types with less descriptors

> 3rd challenge: segmentation of internal defects in X-ray images to establish a ground truth

- ➤ More than 600 logs (~160 « Oaks » ~70 conifers,...)
- Moisture alters the contrast of density between structural elements and normal wood
- ➤ Good results with room for improvement for conifers (Architecture CNN U-Net -> F1 = 0,698)
- Difficulty for broadleaves with very low contrast

Khazem et al. 2023

FOREM 2025 1st-3rd April 2025 T.Constant et al.

- ➤ 4th Challenge: Moving from surface detection to internal defect quantification
 - Due to segmentation difficulties, just for Fir and Spruce, and contours from X-Ray data
 - > Trial of three types of neural networks
 - SegNet : Reference network for segmentation

➤ U-Net : Reference network for segmentation

- ConvLSTM (recurrent convolutional network)
 - Travaille sur une série d'images
 - Allows the introduction of a spatial dependence between the slices when linking the surface irregularities to the defect

Khazem et al. 2023

p. 18

- ▶ 4th Challenge: Moving from surface detection to internal defect quantification
 - Metrics of performence of the different neural networks on the validation set

Whatever the metrics, the recurrent convolutional network performs better

Khazem et al. 2023

- ➤ 4th Challenge: Moving from surface detection to internal defect quantification
 - Performence of the different neural networks on the validation set

Input: Contour (extracted from X-ray data)

- → Ground truth: knots segmented by AI in X-ray data
- → SEG-NET : Underestimation, even omission of some knots
- → ConvLSTM : some slight differences with ground truth but satisfactory for roundwood quality assessment.

Fir

▶ 4th Challenge: Moving from surface detection to internal defect quantification

FOREM 2025 1st-3rd April 2025

T.Constant et al.

p. 21

▶ 4th Challenge: Moving from surface detection to internal defect quantification

> 3D result for a Spruce log

Khazem et al. 2023

- ➤ Conclusions and Perspectives (→ AAP PEPR Forestt : EQUALIA Project)
 - ☐ Prediction of the internal defects from outside
- > Proof of concept for conifers is established, but needs to be strengthened
- ➤ Many questions remain about the suitability of 3D capture
- For broadleaves, a bottleneck is the segmentation of defects in X-ray data
 - Need for suitable data to continue...
- Ground truth for segmentation of internal defects from X-Ray CT scanned logs
 - ➤ By digging in old data → 350 short oak logs (3D Model + X-Ray data)

A database combining external descriptions and X-Ray CT-scans (40 trees from 6 species) planned during WoodSeer but still under construction...

WoodSeer Database: 40 logs (6 species)

Data Illustration for 1 pine

FOREM 2025 1st-3rd April 2025 T.Constant et al.

Data illustration for 1 Pine (Zoom)

INRAe

