Tree diversity effect on dominant height in temperate forest

Patrick Vallet, Thomas Pérot Irstea Nogent-sur-Vernisson

CAQSIS, 28 – 29 March 2017, Bordeaux

Overyielding in mixed forest

Context

- For many species associations, a mixture effect on productivity
- Mixture effect often studied on basal area

Is height growth influenced by tree mixture?

- Is overyielding found on basal area correspond to:
 - A real-overyielding?
 - A different allocation of produced matter
- Study at the species level
 - Species dominant height growth

Analysis method using NFI data

GENERAL PRINCIPLE

- Step 1:
 - Selection of a "pure stand dataset" in NFI data
 - Selection of a "mixed stand dataset" in NFI data
- Step 2:
 - Development of specific dominant height growth model in pure stand Hdom = f(age, climatic & edaphic variables)
- Step 3:
 - Model applied in mixed stand dataset → Expected dominant height (control)
 - Calculation of mixture effects

Hdom_{observed} - Hdom_{expected}

 $\mathsf{Hdom}_{\mathsf{expected}}$

• Analyses of the mixture effects

Species studied PURE STANDS

Dominant height growth model developed for 5 target species

Species studied

MIXED STANDS

- Selection in the same geographical area (SylvoEcoRégions)
 - A SER is selected in mixed stand database only if at least 5 pure plots were used for pure stand model calibration

Species studied

MIXED STANDS

• Mixture effect of a companion species on the target species

	Abies alba Mill.	Acer pseudoplatanus L.	Betula pendula Roth	Carpinus betulus L.	Castanea sativa Mill.	Fagus sylvatica L.	Fraxinus Excelsior L.	Picea abies (L.) Karst.	Pinus nigra Arn. laricio	Pinus nigra Arn. nigra	Pinus sylvestris L.	Prunus avium L.	Pseudotsuga menziesii (Mirb.) Franco	Quercus robur L.	Quercus petraea (Matt.) Liebl.	Quercus pubescens Willd.
Sessile oak	-	-	12	21	12	233	25	-	-	-	42	-	-	123	-	-
Common beech	79	19	-	29	-	-	55	35	-	-	35	10	-	94	216	-
Scots pine	-	-	-	-	-	31	-	16	12	27	-	-	-	26	32	12
Silver fir	-	-	-	-	-	64	-	89	-	-	10	-	-	-	10	-
Norway spruce	109	-	-	-	-	43	-	-	-	-	23	-	15	-	-	-

Number of plots in mixed stands

Species studied

MIXED STANDS

• Seven mixture associations

Species as	ssociation	Number of plots			
Sessile oak	Common beech	195			
Sessile oak	Scots pine	26			
Common beech	Silver fir	63			
Common beech	Norway spruce	35			
Common beech	Scots pine	27			
Scots pine	Norway spruce	14			
Silver fir	Norway spruce	87			

Analysis method using NFI data GENERAL PRINCIPLE

- Step 1:
 - Selection of a "pure stand dataset" in NFI data
 - Selection of a "mixed stand dataset" in NFI data
- Step 2:
 - Development of specific dominant height growth model in pure stand Hdom = f(age, climatic & edaphic variables)
- Step 3:
 - Model applied in mixed stand dataset → Expected dominant height (control)
 - Calculation of mixture effects

 $Hdom_{observed}$ - $Hdom_{expected}$

Mixture effect = ____

 $\mathsf{Hdom}_{\mathsf{expected}}$

• Analyses of the mixture effects

Development of dominant height growth model PURE STAND

• No height increment data in French NFI : only transversal data

- \rightarrow Use of a standard growth curve
- \rightarrow Need to include biophysical factors to take into account site fertility

Hossfeld II model type

- Standard curve in literature
- Parcimonious: 3 parameters
- Flexible: can be adapted to many situations

Asymptotic value

$$a = a_{0,i} + \sum_{k=1}^{n} a_{k,i} \times X_k$$

 X_k are environmental factors

Example for sessile oak PURE STAND

4 8 Dominant height 8 9 observed e predicted Predicted dominant height curves 0 50 100 150 200 0

Age

Sessile oak

Environmental factors induced variations

Biophysical factors in the height models

	Factors		Parameter	Sessile	European	Scots	Silver	Norway
			oak	beech	pine	tir	Spruce	
	Intercept		a ₀	36.87 ***	33.81 ***	23.57 ***	23.28 ***	6.29
	Elevation	(km)			-8.69 ***	-9.06 ***	-8.17 ***	7.99 ***
	Elevation ²	(km²)				3.62 ***		-7.59 ***
	March min. temperature	(°C)		1.17 ***				
Climate	Slope	(%)		-0.10 ***		-0.0317 **		
and water	Soil depth	(cm)				0.0496 ***		
availability	Soil water holding capacity (mm)			0.27 **	0.0490 ***		0.0317 ***	0.0303 ***
	July water balance	(mm)				0.076 ***		
	$ u v water balance^2 (mm^2)$				-0.00055 ***			
	luly water deficit	(mm)						-0.049 ***
	Nitrogen index (Ellenberg)	-	a.		0.86 **	1 01 ***	1 17 ***	0.89 ***
Soil	nH ²		чĸ		0.00	-0.098 ***	1.17	0.05
characteristics	Limostono hodrock	- (hooloon)		C 93 ***		-0.058		
	Limestone bedrock	(boolean)		-6.82				
	Siliceous bedrock	(Boolean)						3.36 ***
	Light index (Ellenberg)	-		-3.06 ***	-0.82 *			9.17 **
Light access	Light index (Ellenberg) ²	-						-1.02 ***
	Density index	-		14.94 ***		4.90 ***	18.26 ***	2.96 **
	Density index ²	-		-7.06 ***			-6.97 *	
Geo. residual effects	Geographical Unit	(boolean)		-2.91 **				
	(Oceanic North-West)	(2000.00)						
	(Massif Central mountains)	(boolean)			-1.85 **			
	Geographical Unit	(boolean)					-3.74 **	
	(Alps mountains)	. ,	h	E1 E6 ***	27.01 ***	24 62 ***	26 21 ***	22.96 ***
			u	21.20	21.21	24.02	20.21	52.00
	Shape factor		С	1.14	1.8/ ***	T'90	2.04 ****	1.96 ***

Analysis method using NFI data GENERAL PRINCIPLE

- Step 1:
 - Selection of a "pure stand dataset" in NFI data
 - Selection of a "mixed stand dataset" in NFI data
- Step 2:
 - Development of specific dominant height growth model in pure stand Hdom = f(age, climatic & edaphic variables)
- Step 3:
 - Model applied in mixed stand dataset → Expected dominant height (control)
 - Calculation of mixture effects

Hdom_{observed} - Hdom_{expected}

Mixture effect =

Hdom_{expected}

• Analyses of the mixture effects

Mean mixture effects on target species

MIXED STANDS - EXAMPLE FOR OAK AND SPRUCE

Effects can be negative, null or positive

rstea

Mean mixture effects by species associations MIXED STANDS

• Effects can be negative, null or positive

Species a	association	Number	Effect of species 2	Effect of species 1 on species 2		
Species 1	Species 2	of plots	on species 1			
Sessile oak	Common beech	195	+2.0%	- 5.4%		
Sessile oak	Scots pine	26	+1.3%	+6.3%		
Common beech	Silver fir	63	+ 4.8%	+3.2%		
Common beech	Norway spruce	35	+ 7.7%	- 7.8%		
Common beech	Scots pine	27	+2.8%	+ 16.7%		
Scots pine	Norway spruce	14	+ 11.6%	-6.5%		
Silver fir	Norway spruce	87	+ 3.3%	- 3.9%		

Significant positive value Significant negative value

Mixture effect depends on height difference between species

Oak – pine case: Close H_{dom} dynamics \rightarrow no mixture effect

Beech – Spruce case: Differentiated H_{dom} dynamics \rightarrow mixture effect

Each species reach the other one

Generalization of the result

ALL SPECIES ASSOCIATIONS TOGETHER

irstea

Expected Hdom difference between associated and target species in pure stands (%)

Comparison with results on basal area

MAUDE TOÏGO'S PHD : 5 COUPLES OF SPECIES

Mean mixture effect MIXTURE EFFECT ON BASAL AREA

Species level

Comparison of height and basal area mixture effects

CAUTION: Only qualitative comparison

Volume ~ $\alpha \times G \times H$

Mixture effect is not a compensation between the compartments but a real effect on volume

Conclusion

- Mixture effect on dominant height depends on height differences between species
 - Leveling process:
 - The taller species limits its height growth
 - The smaller species increases its height growth
- Lower magnitude compared to effects on basal area
 - From -7.8% to +16.7% for dominant height
 - Basal area effects from -5.8% to 50.8% (Toïgo et al. 2015), and usually in the same direction
 - \rightarrow Real overyielding, and not a compensation between radial and height productivity

