

Future-oriented integrated

INTEGRAL FUTURE-ORIENTED INTEGRATED MANAGEMENT OF EUROPEAN FOREST LANDSCAPES

CAQSIS - April 2014

EUROPEAN COMMISSION

Christophe Orazio, Rebeca Cordero (EFIATLANTIC) Baptiste Hautdidier, Céline meredieu, Patrick Vallet, Christian Pilaar, François de coligny and IRSTEA team

Modelisation d'un paysage de 100000ha selon plusieurs scenarios à l'aide de SIMMEM *Integral modelisation work in France*

Content

- Project overview
- Input data
 - Stand data
 - Forest owner behaviour data
 - Forest ownership (types)
 - Mangement options
 - Scenario
- Simulations with SIMMEM
 - Initiatlisation
 - Evolution
- Outputs
- Conclusion

Integral modelisation work in France

Project overview

- Analyse in a quantitative way potential impact of policies on a landscape and identify more robust policies for sustainable forest management
- 20 case studies in Europe
- 1 In France
- 2 technical WP
 - WP 2 : ecosystem services and landscape modelisation
 - WP3 : Policy assessment, forest owners behavior • and backcasting

Integral modelisation work ir Input data / Stand data

- Poor NFI data available (only Pine/oak)
- Photo interpretation on 80% of the area by Rebeca
- MODIS long term series analysis from february 2000 to january 2014 – Kmeans algorithms on vegetation indices over years

Integral modelisation work in France Input data / Forest ownership

- Cadastre provide all owned parcels
- Social science interview and FORSEE work provide forest owner types
- Stratified Random sampling provide forest owners types spatial map

Integral modelisation work in France Input data / Forest management options

- Management options are identified based on actual recommendations
- They are spatialized according to existing stand
- For new management options suitability maps are used in the random sampling

Impossible (p=0%) Highly unlikely (p=5%) Possible but unadvisable (p=10%) Possible but underoptimal (p=50%) No restriction (p=100%)

Pontenx pilot zone management options

	Scenario name	P1- MP High quality	P2- PM Standard classic	P3- Short-term	P4 PM- Half- dedicated to biomass	P5 PM- Biomass	P6- No management	P7 : Eucalyptus *! no model in DSS at the moment ? DISCUSSION WITH FCBA to include a model in CAPSIS onlanuary 2014	P8a <mark>: <u>Riparia</u></mark>
•	Objective	High quality timber >1,5m3	Timber 1 to 1,2 m3	Small timber 0,3 to 0,4 m3	9 years-biomass (30t/ha) 35 years timber BO (1 m3)	Biomass70 t/ha	Timber 1 to 1,2 m3	pulp, particle and fibre board	<u>Timber</u>
	Site preparation (fer tilisation alter site index)	No <u>ploughing.</u> Round up. <u>Broadleaf</u> trees preservation	Full <u>ploughing</u> Fertilization	Full <u>ploughing.</u> fertilization	Full <u>ploughing</u> . NO fertilization	Stump removal, full ploughing,. fertilization, drainage	Full <u>ploughing.</u> No Fertilization	Sub-soiling; fertilization at plantation	No
A	Stand composition	Maritime pine, broadleaves preservation, diversified wooded undergrowth	Even-aged single species forests	Even-aged single species forests	Even-aged single species forests	Even-aged single species	Even-aged single species forests	Even-aged; single species forests	Even-aged; si species fores
	Genetic material *! change in site fertility	No	Genetically improved plants	Genetically improved plants	Genetically improved plants	Genetically improved plants	Genetically improved plants	Genetically improved plants	<u>Natural rege</u>
	Regeneration type *! only density is considered by DSS	Natural regeneration-1400 stems/ha after clearing	Plantation 1250 stems/ha	1250 stems/ha	2500 stems/ha (2*2m, 1 row biomass, 1 row timber)	3000 stems/ha	Plantation 1250 stems/ha	Plantation 1250 stems/ha (for Portugal) 1600 stems/ha (for <u>Galicia</u> and <u>Asturias</u>)	\$\$VOIR
	Cleaning/ Clearing/ Weed control *!	Rack creation. Cleaning 1 row /2, with diversified undergrowth, 1 time every 3 to 5 years after rack creation. 2, clearings	Full cleaning once a year during 5 years (every 5 years) after	2 cleanings	Silvicultural maintenances between 9 and 30 years	No practices	First cleaning	High forest: during 1" yr after plantation manual weed control around seedings; mcchanical weed control at <u>yrs</u> 1 and 3 <u>Coppice stands</u> : mechanical weed control at <u>yrs</u> 3 and 5 /2 brush mechanical, chemical or with cattle eradication and crushing without burring rests to avoid	No

Integral modelisation work in France Input data / Forest owners behaviour

- Scenarios are built from main drivers identified by experts and stakeholders
- From scenarios we know evolution of demand and incentives
- Matrix of forest management per forest owner types are built for each scenario

uture-oriented integrated anagement of European mest landscapes

Prices of P. Pinaster wood products	Structure and competitivenes s of the PWC	Structure and nature of the torest tenure	ES & Carbon regional offer	Governing errorgements of forest	Relation with other land uses	General atitudes towards forest	Collective handling of risks	Technical- institutional silvicultural
Wesk - uniform	a Industrial nutation - biomess	Delegating Individuals	 Weak offer 	Renote steering	Coastal attractiveness, reand	Coexistence of trature' & "production/	Strong collective fice management -	Moderately diverse
Recovery - energy driven	 Industrial decline - esported 	Rise of larger legal entities	⁴ Public-led, market-based, ES offer	Coordinated, PAIC-oriented, governing	Costsi atractiveness, agricultural	Segregation of 'hature' & 'production'	Weakening of fire management	≠ Fest
Recovery - timber driven	Industrial diversification - timber-led	Grouping owners	Public-led, zoning based, ES offer	Differentiated governing	Diffuse urbenization	Synergies via ES retranslog	Private	Diverse - tap
	Pulpwood - energy	-	Private-led marketing of	_		Production 1st	Municipal	Diverse- qualitative

4.4.3.4 Scenario 1: Unfinished bioenergy

Owne

COOPER

- Table 13 4.4.3.5 Scenario 2: Biorefinery innovation & land-use tensions
 - Table 14: 4.4.3.6 Scenario 3: The European biomass sink

Tab 4.4.3.7 Scenario 4: The 'Green' innovative cluster

4.4.3.8 Scenario 5: The territorial partnership

Table 17: Behaviour matrix in Pontenx for driver scenario 5

Ģ	Gź				% of	area i	unde	r ma	nager	nent p	orog
G St	G: G		Owner type	% of total area	P1	P2	P3	P4	P5a	P5b	P
tion Arr	G		G1A	25	21,2	64,9	-	-	-	-	-
Few	SL Rationa		G1B	15	70,5	18,9	-	-	-	-	1
	 A st priva 		G2A	20	24,1	54	-	-	-	-	3,
	• The a sh	The a sh	G2B	20	25,6	53,3	-	-	-	-	1,
-			G3	12	14,6	27,3	-	-	-	-	30,
		Ra	G4	8	9,2	55,8	-	-	-	-	5,
TION	E U CO	•	Sum	100	31,4	46,7	0	0	0	0	4,

Integral modelisation work in France Simmulation with SIMMEM/ Initialisation

- Lemoine dune and fagacee are able to initialize from Density, age fertility without Ddom and DG
- Poor knowledge of fertility on oak
- It was necessary to build initialisation curves to estimate Dd and Ddoms on stand plateau
 - Accurate for young ages
 - Row estimate on old ages (fertility not considered – can be improved)

Integral modelisation work in France Simmulation with SIMMEM/evolution

1.005

0.995

0.99

0,985

0.98

0.975

0,97

0.25

- Verbal description are translated into yield table using CAPSIS
- Problem to set up relative density from french publication (Portuguese RDI used)
- Quite tricky to build curves Ddom/Rdensity for each yield table
- Good tools : minimum interval between thinning + max clear-cut area a year (we used 10%)

Then we run simmem

But you all now that! We moved from 10hours to 10 minutes!

Integral modelisation work in France Simmulation with SIMMEM/Outputs

- Standard models outputs :
 - Age, height, diameters, ..
 - Volume, C, date from last thinning
- Additional indicators from wrapper
 - Standing value, ...
 - Fire risk index, stability index, ..

Conclusion

•SIMMEM allows to run many CAPSIS models on the same landscape in an efficient way.

•From outputs, we could easily illustrate trade-offs between services and options

•Good collaborative tools – strong inputs from IRSTEA

•Improvement needed for INTEGRAL :

- Fix wind stability index pb
- Increase cover of input data to 100%?
- Add eucalyptus and black locust?
- Validate some of derived indicators.
- •Good points from landscape approach :
 - Landscape constraints : total harvested area
 - Spatialised outputs

•Promising tool:

- Switch from a species to other after plantation
- Have simulation on one plot influenced by others for risk assessment...!

. integral

