Improving capabilities in fuel treatment analysis with STANDFIRE and FuelManager

CAQSIS Meeting 3/28-3/30 2017

Russ Parsons USFS Fire Sciences Lab, Missoula, MT

Partners: Francois Pimont, INRA Lucas Wells, OSU Matt Jolly, USFS RMRS Greg Cohn, OSU Rod Linn, LANL Ruddy Mell, USFS PNW Nick Crookston, USFS Chad Hoffman, CSU

- Research Topics
- Priority Areas
- Experimental Forests & Ranges
- Partnerships
- People
- Locations
- About R&D
- National Genomics Center for Wildlife & Fish Conservation
- Urban Forest Connections Webinar

Contact Information

US Forest Service Research & Development 1400 Independence Ave., SW Washington, D.C. 20250-0003 800-832-1355

5 Regions

67 Labs

- To learn more about Forest Service research locations:
 - use the <u>clickable map</u> or <u>list</u> below for the research stations' locations
 - view the sites for Experimental Forests & Ranges

Research Stations' Locations

Missoula Fire Sciences Lab Founded 1961

About 80 people total 13 permanent scientists

Burn Experiments

Wildfires in the US

Average of 2.51 Million Ha burned per year
 but > 4 Million HA burned in 2015 – record year

US Forest Service primary fire management agency ~ \$2 Billion per year spent on fire fighting: 1/2 our budget ~ 10,000 fire fighters: 1/3 our worklorce

Disturbing trends

Increasing area burned Higher fire severity Increasing population near forest Increasing costs and risks

Firefighting alone cannot fix the problem: unsustainable

Fuel treatments:

A major component of current fire management strategies

Fuels – only part of fire behavior triangle we can change

Map showing where fuel treatments are needed

National, high priority issue

- 30 Million ha of USFS land need fuel treatments
- ~ 1 million ha treated per year on USFS land
- ~\$200 million spent on per year

Decisions needed:

- How to prioritize?
- What strategies work best?
- How well will they work?
- Many questions still unanswered

The Forest Vegetation Simulator (FVS)

Strengths

- Primary vegetation modeling tool in US
- Individual-tree, distance-independent, growth and yield model
- Original model: Prognosis (Stage 1973)
- Empirical model, calibrated by geographic region
- Large user base (> 500 +)
- Several extensions disturbances, insect attacks, fire, carbon, economics, climate change

Limitations

- Old architecture monolithic
- Overly integrated -- not modular
- → Limited capability to improve
- Recent, open source developments

Assessing fuel treatments at stand scales

Primary tool: FFE-FVS

Forest Vegetation Simulator (FVS)

How stands grow over time
Response to treatments
Numerous forest processes
Higher detail data critical to ecology, habitat, silviculture

Stand Visualization System (SVS)

FFE: Fire & Fuels Extension

- Adds biomass / fuel quantities
- Simple fire modeling
- Fire effects

Mismatched detail: fuels vs. fire

Fuels

Fire

- Fuels information in FFE-FVS is more detailed than what the fire models can use.
- fully attributed tree list \rightarrow 4 single values
- litter, duff, CWD, shrub, herb \rightarrow Single FBFM
- Relatively low sensitivity
- Fire modeling is a bottleneck
- Difficult to represent real/measured fuels
- Hard to assess how fuel changes translate to fire behavior changes
- For many purposes, we need more detail

STANDFIRE: Providing an alternative approach for examining fire at stand scales

CAPSIS FireLib

http://www.inra.fr/capsis

In STANDFIRE, CAPSIS Firelib provides:

- Visualization, analysis and I/O capabilities
- 3D geometry calculations for biomass allocation to voxels
- Capability to develop complex, spatially explicit treatments

STANDFIRE CAPSIS Interactive 3D viewer

Fire library

- It is one of the shared libraries
- biomechanics (P. Ancelin)
- castanea (H. Davi)
- crobas (A. Makela, R. Schneider)
- delaunay, math, nelderoptimization (A. Piboule)
- economics / 2 (C. Orazio, O. Pain, G. Ligot)
- emerge (T. Bronner)
- fire (F. Pimont)
- forenerchips (N. Bilot)
- forestgales (B. Gardiner, C. Meredieu, T. Labbé)
- genetics (I. Seynave et al.)
- ifnutil (J.L. Cousin, M.D. Van Damme)
- johnsondistribution (T. Fonseca)
- lerfobutil (F. Mothe)
- numerics (A. Franc)
- organon (N. Osborne)
- quest (A. Achim, E. Duchateau)
- regeneration (P. Balandier, N. Donès)
- samsaralight (B. Courbaud, N. Donès, G. Ligot, M. Jonard)
- spatial (F. Goreaud)
- volume (G. Lagarrigues)

- Potential applications:
- To give a 3D voxelized representation of foliage/fine woody elements for physics-based computations :
- Fire simulations
- Windflow with LES codes
- Radiative transfer in heterogeneous canopies
- Etc.
- Can be applied to *spatialized trees* (should heritate from *FiPlant*) or vegetation layers (should heritate from *FiLayerSet*)

http://capsis.cirad.fr/capsis/help_en/firelib

Fire library and physics-based fire models

CIENCE & IMPACT

CIENCE & IMPACT

GUI of the export
O FIRETEC

FIRETEC GRI)
-------------	---

Firetec grid						
Exported zone						
Export all the scene						
South west origin of the grid X (m) : 0.0						
South west origin of the grid Y	(m): 0.0					
X axe scene size (m) :	300.0					
Y axe scene size (m) :	200.0					
Grid						
X size for Firetec voxel (m) :	2.0					
Y size for Firetec voxel (m) :	2.0					
Mean Z size of the firetec voxel (m) : 15.0						
Z number of voxel : 41						
Ratio dz(1)/dz :	0.1					
1. Create grid						
X number of voxels :	150					
Y number of voxels :	100					
Z Total (m) :	615.0					
Z size of voxels (m) :						
1.5080309						
1.5562165						
1.0525877						
2. Add a topo file						
Topography file	Browse					
File format :	● little Endian 🔵 big Endian					
The grid(s) was(were) successfully built.						

PARAMETERS

Exp	orter parameters				
Plant discretization ratio (0-1) : 0.1					
LayerSet discretization dx (m) : 0.5					
LayerSet discretization minimum dz (m) : 0.2					
LayerSet discretization ratio (0-1) : 0.2					
Voxel number for layerset cutting : 2000000.0					
	Crown overlapping				
Production of tree crown voxel list (ecological applications)					
	Verbose log 🗌 Voxel intersection visual control				
Particles					
	Truin Dood				
	Twig1_Dead				
	1 Twig2_Dead				
	/ Twig2_Live				
	Select all Unselect all				
	3. Export fuel items				
Ou	put files				
Pre	ix of the four files : trees				
File	format :				
	4. Save file(s) Close Help				

Modeling fuels and fire effects in 3D: Model description and applications

François Pimont ^{a, *}, Russell Parsons ^b, Eric Rigolot ^a, François de Coligny ^c, Jean-Luc Dupuy ^a, Philippe Dreyfus ^e, Rodman R. Linn ^d

^a URFM, INRA, 84914, Avignon, France

^b USDA Forest Service, Fire Sciences Lab, Missoula, MT, 59808, USA

^c AMAP, INRA, 34398, Montpellier, France

d EES, LANL, Los Alamos, NM, 87544, USA

e RDI, ONF, 84000, Avignon, France

Recent paper describes FuelManager --CAPSIS FireLib implements many FuelManager core modeling capabilities

Animation: four fire simulations -- Swan Valley Site

UL: control, UR: 1.5 m crown space, LL 3m, LR, 4.5m

20

10

Ο

ليتتبينين

10

20

30

x coordinate

......

50

60

40

Interface

Post

process

WFDS

output

Detailed output characterizing fire behavior

Heat transfer and fuel consumption over time

> Fire effects: Probability of mortality by tree

Summary: STANDFIRE

- STANDFIRE uses CAPSIS FireLib to extend FFE-FVS providing:
 - Detailed fuel modeling capabilities that better represent real world fuels
 - 3D physics-based fire modeling platform
 - Opportunity for spatially explicit treatments
- STANDFIRE is a prototype
 - Will continue to be in active development
 - Lots of work to be done!
 - Interested in collaboration
- Next steps
 - LiDAR forest data read in
 - Topography
 - GTR and paper later this year

Expanding our collaboration

- Looking ahead, forestry faces steep challenges
 - Climate change, drought, die-off
 - Insects and diseases
 - Fire
 - Policy? ☺
- Many reasons to work more closely together
- Common themes
 - Fire science
 - Forest growth and management
 - Disturbance interactions
 - Field studies in wilderness landscapes
 - Mapping / remote sensing / LiDAR

For more information, contact Russ Parsons

(406) 329-4872, rparsons@fs.fed.us

Auxiliary Slides

CAPSIS: World Class modeling

http://www.inra.fr/capsis

22

- Our modeling is implemented in CAPSIS, a generic software platform for forestry modeling, developed at INRA since 1994:
 - A world-wide community of modelers
 - 1 or 2 developers full time

Actors and roles developers modellers end-users

2.2 Developing modules

- Clear participation rules (charter):
 - Common parts = free software (LGPL)
 - Modules freely accessible to members

- Benefits:
 - Common architecture: efficient, versatile, collaborative
 - Access to common libraries, features, documentation
 - Diffusion: repository, website, documentation

Dufour-Kowalski S., Courbaud B., Dreyfus P., Meredieu C., de Coligny F., 2012. <u>Capsis</u>: an open software framework and community for forest growth modelling. **Annals of Forest Science** (2012) 69:221-233

CAPSIS FireLib: fuel Modeling

- Individual tree crowns
- crown biomass from FFE-FVS
- Crown profile geometry

Can be parameterized

Distribution of biomass within crown volume

Fuel heterogeneity

- Fuels as discrete/ grouped elements
- Multiple fuel sets, characteristics
- Patchy / discontinuous fuels

Fuel Treatments

- Wide range of thinning, pruning capabilities
- Spatially explicit treatment and visualization
- Calculation of fuel changes, fire behavior and effects

Advances in fire modeling Then: (1972) open new possibilities

Торіс	"Regular" models	Physics based fire models	
Surface fuels	Homogeneous, continuous, contiguous single fuel model (for 30m + pixel)	Heterogeneous, discontinuous, multiple fuels; multiple fuels interact	
Canopy fuels	4 variables: CBD, HT, CBH, % cover (for 30m + pixel)	Full tree list with x,y,z Full vertical and horizontal distribution	Now: (2017:
Surface fire	Rothermel 1972	All fire spread is	
Transition to crown fire	Van Wagner	interactions (fuel, fire,	
Crown fire spread	Rothermel 1991	atmosphere, topography)	
Veg/wind interaction	Single wind adj. factor	Indiv . tree crown drag, full windfield interaction	
Veg/fire interaction	None, but some thresholds	Highly sensitive to fuel structure, arrangement	30-0
			p

Small scale lab burns used to develop Rothermel model

Now: (2017: 45 years later)

3D physics-based fire simulation with FIRETEC

Fuel treatments:

A major component of current fire management strategies

Fuels – only part of fire behavior triangle we can change

National, high priority issue

- 2013 65-82 Million acres of USFS land estimated to need fuel treatments
- 2-3 Million acres treated per year on USFS land
- ~\$200 M. spent on hazard fuels in 2014 alone
- 27.6 Million acres treated between 2001 and 2011

National map for priority of broad scale fuels management

Decisions needed:

- National / regional / Forest / Project – allocation of \$
- What strategies work best?
- Many questions still unanswered

Increasingly complex constraints in a rapidly changing landscape

Beetle attacks

Drought stress

CAPSIS FireLib statistically extends the SVS stand to a larger simulation area specified by the user, using simulated annealing (optimization approach)

This larger area provides a context for the 3D fire simulation such that:

- the dynamic windfield can adjust to the canopy
- the fire can burn into the stand
- The SVS square serves as a focal point for analysis

Same stand after spatially explicit, crown-space thinning

An Overview of STANDFIRE

What does STANDFIRE do?

- Extends FFE-FVS with alternative, high-detail fire modeling
- Accesses fuels data from FFE-FVS using pyFVS
- Builds off SVS treelist file or real world spatial forest data
- Growth over time comes from FVS
- Relies on CAPSIS and FireLib for spatial fuel modeling
 - Extend data statistically to larger areas
 - Quantification of fuels in voxels
- Opens door for more in-depth assessments of fuel treatments or other fuel changes

Architecture

- Python: pyFVS (open source interface to FVS model)
- Java: CAPSIS + FireLib (implements FuelManager concepts)
- Modular design enables testing of new components

Getting fuels data into 3D

- We need trees with coordinates for 3D modeling
- Stem mapped stand data is still rare, so STANDFIRE builds upon the SVS stand.
- Currently developing LiDAR stem map input process.

Running 3D fire models

STANDFIRE produces input files for two distinct and independent physics-based fire models

About physics-based fire models

Driven by first principles Hydrodynamics (CFD) modeling Solve Navier-Stokes equations Emergent behaviors Flow of wind around trees and topography Fire spread Computationally intensive Multiprocessor computers Slower than real time

CAPSIS FireLib

http://www.inra.fr/capsis

CAPSIS – Computer Aided Projections of Strategies in Silviculture

- Open software forestry modeling platform (INRA, France)
 - Modular framework, common architecture
 - Facilitates connections between models
 - FuelManager and STANDFIRE both use FireLib
 - In STANDFIRE, CAPSIS Firelib provides:
 - Visualization, analysis and I/O capabilities
 - 3D geometry calculations for biomass allocation to voxels
 - Capability to develop complex, spatially explicit treatments

STANDFIRE CAPSIS Interactive 3D viewer