

What happens to growth of beech poles when controlling wind sways?

Dongmo Joël¹, Constant Thiéry¹, Ningre François¹, Farré Etienne¹, Fournier Meriem¹, Dlouha Jana¹ ¹ Université de Lorraine, AgroParisTech, INRAE, Silva, Nancy 54000, France;

Introduction

> During its whole life, tree acclimates to its environment (light, nutrients, drought, wind)

(Coutand et al., 2008)

- Forest tree under wind sways:
- increase in radial growth (Nicoll et al., 2019; Bonnesoeur et al., 2016; Fournier et al., 2015; Meng et al., 2006)
 - reduction of axial growth (Nicoll et al., 2019; Meng et al., 2006)

Plant material

Reduction of wind sways

Tree specie: Beech (*Fagus sylvatica L*.) Even age stand of 30 years old Mean of tree height: 14 m Mean diameter: 13 cm

10 trees per treatment

40 studies trees

Thinning radius: 4 m

Guying height: 7 m

Thinned and guyed tree (TG)

Study site

Soil pit

Soil type: Rendosol

Soil depth :30 to 60 cm

Rainfall: 775 mm

Mean temperature: 10°C

Maximum wind speed: 100 km/h

Wind Rose for the last 30 years (meteoblue)

Growth measures

Identification of growth unit for axial growth

For each tree, 8 growth unit were identified: 4 before treatments and 4 after treatments

Circumference measure for radial growth

We follow tree circumference during the 4 years after treatment

Stem analyses

We cut stem tree in to log with 1 m lenght

Cross-sectional sample

Device for measuring the tree rings width (LINTAB 6)

Response on radial growth

Measures done at breast height

	dR/dt [mm/year]	x Ref _{UTF}
TF	4.3	2.0
TG	2.6	1.2
uTF	2.1	1.0
uTG	1.01	0.5

- \triangleright 80% of radial growth increase after the thinning is due to wind sways increment (TG = uTF)!
- Reduction of wind sways in unthinned trees reduce their radial growth of 50%

Response on axial growth

- Nor wind sways neither competition release has affected the axial growth of beech poles
- Lower apical control in hardwoods?

Distribution of the tree ring area along the tree height

Conclusion

> Axial growth in beech pool is not affected by wind sways and competition

- Wind sways strongly affect radial growth at breast height (effect of wind >> effect of competion)
- ➤ In trees submitted to sways, biomass is preferentially allocated to the bottom of the stem

Thank you!!

