

New features in PHENOFIT5 to better integrate the major components of forest trees fitness

NATHALIE ZEBALLOS CEFE, MONTPELLIER

Isabelle Chuine - CEFE Ophélie Ronce - ISEM

SESSION THEME

What can we learn from models about the impact of climate change on forests?

FOREST MODELS CAN PREDICT THOSE IMPACTS

Forest model types

FOREST MODELS CAN PREDICT THOSE IMPACTS

Forest model types

PHENOFIT: A PROCESS-BASED SDM

Predict potential species distribution based on eco-physiological processes taking into account phenology.

Phenology sub-models

Leaf unfolding

Flowering

Fruit maturation

Leaf senescence

Time

PHENOFIT: A PROCESS-BASED SDM

Potential species distribution trough fitness

FITNESS

Model inputs

Species parameters

Local environment

RUN PHENOFIT5

RUN PHENOFIT5

Model inputs:

Species parameters

- Phenological dates
- Growth
- Reproduction
- Stress resistance (frost, drought)
- ~ 60 parameters

Local environment:

- Daily meteorological data:
 - Temperatures min, max
 - Precipitation
 - Evapotranspiration
- Photoperiod
- Soil water holding capacity

Initial condition: Wood biomass, species, age...

MY CURRENT PROJECT

Can we predict selection on forest trees under future climate using a phenological model?

ANR FLORES

LOCAL ADAPTATION TO CLIMATE CHANGE

Genetic adaptation

LOCAL ADAPTATION TO CLIMATE CHANGE

Genetic adaptation

Speed of < Speed of adaptation climate change

for long-lived organism as trees

ASSISTED GENE FLOW (AGF) TO THE RESCUE?

Managed translocation of individuals between populations within the current range of a species, to facilitate their adaptation to a warmer climate and local persistence.

ASSISTED GENE FLOW (AGF)

Aim:

- 7 the frequency of particular genetic variants

Risks:

- Translocation failure
- Introduction of disease
- Loss of local genetic diversity

ASSISTED GENE FLOW (AGF)

Aim:

- 7 the frequency of particular genetic variants

Risks:

- Translocation failure
- Introduction of disease
- Loss of local genetic diversity

Can we optimize AGF strategies with the help of models?

Aim: identify interesting provenances for assisted gene flow for wood industry

Abies alba

(Abies cephalonica

Abies nordmanniana

Abies bornmulleriana)

Mediterranean firs

Quercus petraea

Quercus robur

Quercus pubescens

Quercus ilex

European oaks

Current distribution range of Quercus petraea (Euforgenus)

Aim: identify interesting provenances for assisted gene flow for wood industry

1. Calibrate and validate the model PHENOFIT 5 for species of interest

Current distribution range of Quercus petraea (Euforgenus)

Aim: identify interesting provenances for assisted gene flow for wood industry

- 1. Calibrate and validate the model PHENOFIT 5 for species of interest
- 2. Predict optimal phenotypes under various climatic scenario and regions
- 3. Identify genetic material for AGF

Current distribution range of Quercus petraea (Euforgenus)

PHENOFIT5 CALIBRATION

Model inputs:

Species parameters

- Phenological dates
- Growth
- Reproduction
- Stress resistance (frost, drought)
- ~ 60 parameters

Environment:

- Daily meteorological data:
 - Temperatures min, max
 - Precipitation
 - Evapotranspiration
- Photoperiod
- Soil water holding capacity

Global scale

Local scale

- Literature
- Online databases (TRY, Oak provenance...)
- Datasets from collaborators

PHENOFIT5 GLOBAL SCALE VALIDATION

Environment:

- Historical daily
 meteorological data:
 ERA5LAND over
 France/Europe (~9km
 resolution)
- Photoperiod
- Soil water holding capacity

Quantitative comparison of modelled variation in fitness with the geographical distribution of species

Initial condition: forest ~60 years, mean wood and leaf biomass over Renecofor sites...

PHENOFIT5 LOCAL SCALE VALIDATION

Environment:

- Historical daily
 meteorological data:
 ERA5LAND over
 France/Europe (~9km resolution)
- Photoperiod
- Soil water holding capacity

Comparison of the outputs with observed sites values:

- Wood and leaf biomass at Tf
- Species proportion

Initial condition: for each Renecofor sites:

- Wood and leaf biomass at T0
- Proportion with second species

Aim: identify interesting provenances for assisted gene flow for wood industry

- 1. Calibrate and validate the model PHENOFIT 5 for species of interest
- 2. Predict optimal phenotypes under various climatic scenario and regions
- 3. Identify genetic material for AGF

Current distribution range of Quercus petraea (Euforgenus)

TAKE-HOME MESSAGE

- Phenofit: a species distribution model based on eco-physiological processes (phenology)
- Upgraded version to better integrate composants of tree fitness (reproduction, competition and drought resistance modules)
- Predict optimal phenotypes under future climate to optimize assisted gene flow strategies

THANKS TO MY COLLABORATORS!

ANR FLORES

Gene flow to the rescue:

Isabelle Chuine Ophélie Ronce

URFM: Caroline Scotti-Santaigne, Bruno Fady, Alice Copie, Frederic Jean...

ONF: Yves Rouselle

Thanks for sharing data sets/values:

Puechabon team

Marie-Claude et Samuel Venner

Georges Kunstler

Marta Benito

THANKS TO MY COLABORATORS!

PHENOFIT 5 Inputs

Phenology

dates of leaf unfolding, flowering, fruit maturation, leaf coloring

Resistance to stress

Minimum temperature resistance of dormant buds, young leaves, mature leaves, flowers, fruits Psi99, Psi88, Psi50, PLC50

Growth

SLA, WUE, maximum leaf/wood maintenance respiration rate Allometry: male flower, female flower, leaf, wood biomass, crown cover Biomass distribution and maximum root depth per age classes (seedlings, juveniles, adults)

Reproduction

Mean Weight of fruit, male flower, female flower, young Fruit Auto incompatibility rate, mean fertilization rate