

Estimation of phenology-performances relations using CAPSIS-CASTANEA model

The study of a common beech (*Fagus sylvatica*) population.

Mt Ventoux, France

Liautaud Kévin Master II EBEN Ingénieur agronome 3^e année, ENSA Toulouse

European forests and climate changes

- In the northern hemisphere, climate changes will cause :
 - Modifications of the species geographic ranges
 - Changes in tree performances within the geographic niche
 - Modifications of forests ability to provide ecosystems services
 - > Necessity to quantify the selection pressures and natural adaptation potential of tree populations.

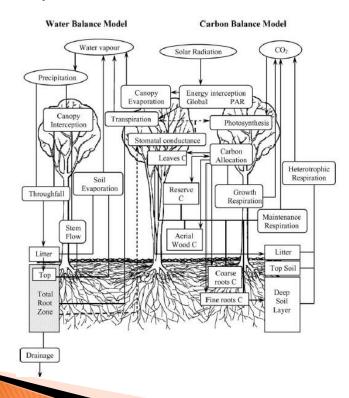
Phenology and adaptations

- Phenological traits are highly plastic (Temperatures, photoperiod, etc...), and have genetic bases
- In northern temperate areas, spring phenology results of a trade-off between:
 - The risk of late frost damages
 - The necessity to maximize the vegetation season length

Davi & al 2011

→ Spring phenology: major determinant of the individual fitness

Objectives


- Determine how strong are selection pressures on phenological traits
- Test the existence of optimal traits values regarding fitness
- Compare the theoretical optimal trait values with observed trait and optimum values

Castanea Model: Determining the selection gradients values

- CASTANEA: Process-based, individual-based model (Dufrêne et al. 2005)
- Integrated in Capsis (2010)
 - Module CASTANEAonly
 - Library CASTANEA

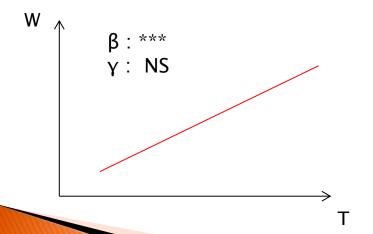
Variables of interest:

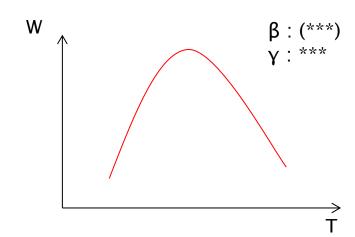
<u>Fitness estimators :</u>

- Seed Production
- Reserves
- GPP

<u>Phenology variables</u>:

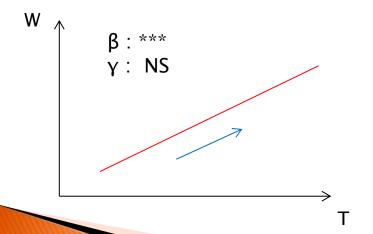
- BudBurst date
- Senescence date

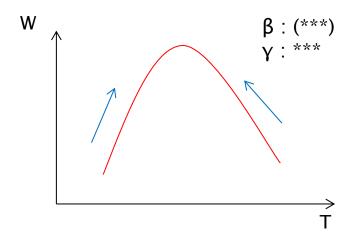

How to estimate the strength and direction of natural selection?


- Selection gradients : Lande & Arnold, 1983
- $\mathbf{W} = \mathbf{f}(\mathbf{P})$ $\mathbf{W} = \mathbf{fitness}$ (estimator), \mathbf{P} : Phenotype
- For one trait $T: W = \alpha + \beta T + 1/2\gamma T^2 + \epsilon$

How to estimate the strength and direction of natural selection?

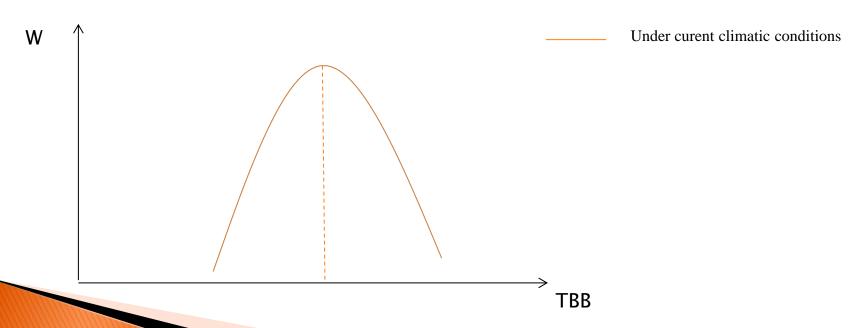
- Selection gradients : Lande & Arnold, 1983
- $\mathbf{W} = \mathbf{f}(\mathbf{P})$ $\mathbf{W} = \mathbf{fitness}$ (estimator), \mathbf{P} : Phenotype
- For one trait $T : W = \alpha + \beta T + 1/2\gamma T^2 + \epsilon$



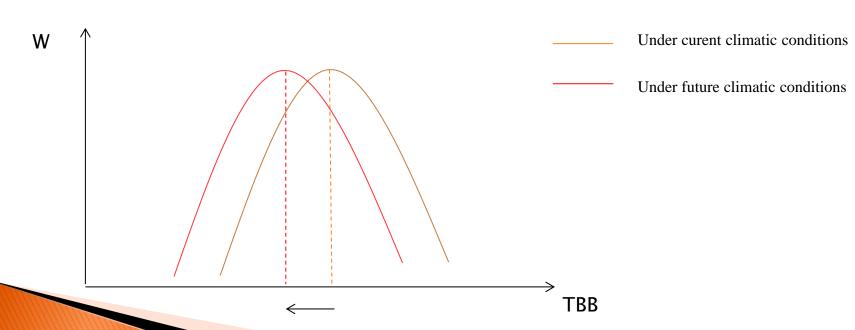


How to estimate the strength and direction of natural selection?

- Selection gradients : Lande & Arnold, 1983
- $\mathbf{W} = \mathbf{f}(\mathbf{P})$ $\mathbf{W} = \mathbf{fitness}$ (estimator), \mathbf{P} : Phenotype
- For one trait $T : W = \alpha + \beta T + 1/2\gamma T^2 + \epsilon$



Spring phenology and performances


- Spring phenology determines :
 - Period during which photosynthesis occurs
 - The risk of late frost damages to young leaves.
- Does a Timing of BudBurst (TBB) optimum exists, maximizing tree performances? (under specific climatic conditions)

Spring phenology and performances

- Spring phenology determines :
 - Period during which photosynthesis occurs
 - The risk of late frost damages to young leaves.
- Does a Timing of BudBurst (TBB) optimum exists, maximizing tree performances? (under specific climatic conditions)

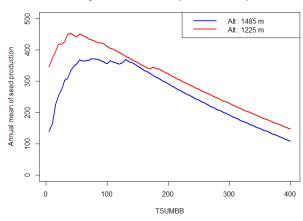
Estimation of Phenology-Performance relations with CASTANEA:


- Simulation details :
 - **Input variables**: climatic data (1959-2012).
 - **Input parameters**: relative to species caracteristics (beech), environmental components (North Mt Ventoux).
 - Each tree is caracterised by a Temperature Sum (TSUMBB, input parameter), determining BudBurst
 - The carbon and water-fluxes at tree level are simulated for 53 years.

CASTANEA: improvement of the phenology module.

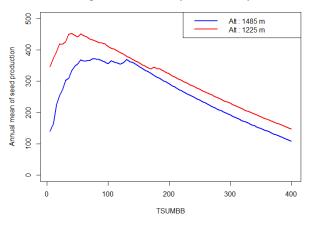
- The model as designed in 2005
 - Does not take into account Chilling
 - Does not simulate the post-frost reflushing
- Modelling the biological effects of late frost on Leaf Area Index, Fagus sylvatica

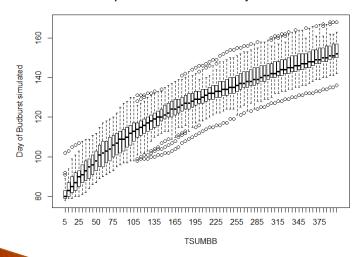
Evolution of LAI in 1991. Alt = 1125 m



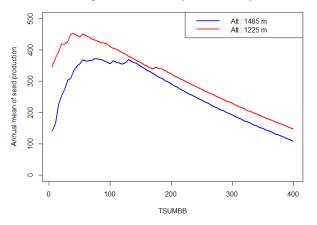
Effects of a late frost in LAI of a *Fagus sylvatica* (Day of BudBurst = 88).

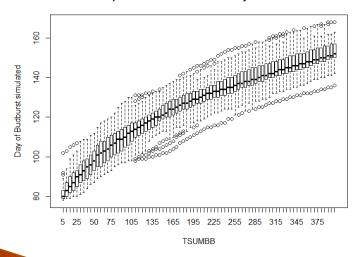
Preliminary results: phenology and performances

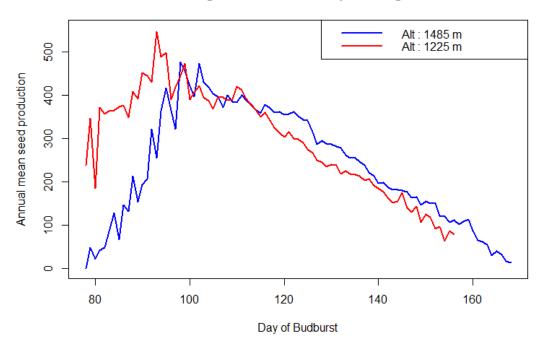

Selection gradient curve on Temperature sum requirements



Selection gradient curve on Temperature sum requirements


Temperature Sum - Simulated Day of Budburst




Selection gradient curve on Temperature sum requirements

Temperature Sum - Simulated Day of Budburst

Selection gradient curve on a phenological trait

Perspectives

- Model improvement: Integration of chilling processes in the phenology module
- **Key questions**:
 - Do other fitness proxy reveal similar optimal trait values?
 - How altitude and curent climate change affect optimal values of phenological traits?
 - How about a coniferous species: Abies alba?

Perspectives

- Model improvement: Integration of chilling processes in the phenology module
- **Key questions :**
 - Do other fitness proxy reveal similar optimal trait values?
 - How altitude and curent climate change affect optimal values of phenological traits?
 - How about a coniferous species: Abies alba?

Thank you for your attention

