Influence of the thinning on the stand structure and yield maritime pine stands

An exercise with ModisPinaster

Teresa Fidalgo Fonseca¹ and Ana Cristina Gonçalves²

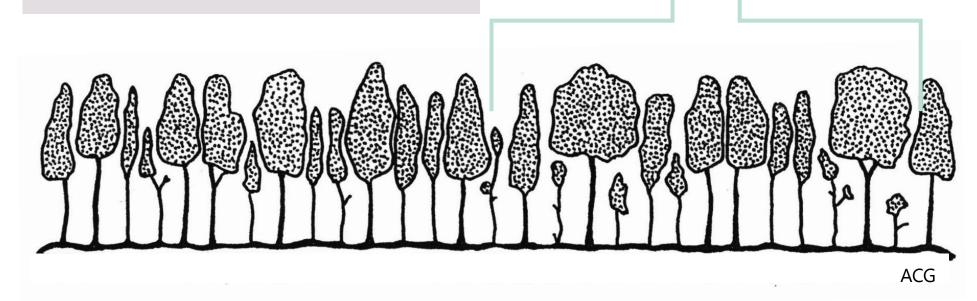
¹Department of Forestry Sciences and Landscape Architecture, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Forest Research Centre (CEF), School of Agriculture, University of Lisbon, Lisbon, Portugal; IUFRO WP 1.01.10; CAPSIS modeler

²MED – Mediterranean Institute for Agriculture, Environment and Development & CHANGE – Global Change and Sustainability Institute, Instituto de Investigação e Formação Avançada, Departamento de Engenharia Rural, Escola de Ciências e Tecnologia, Universidade de Évora, Apartado 94, 7002-544 Évora, Portugal

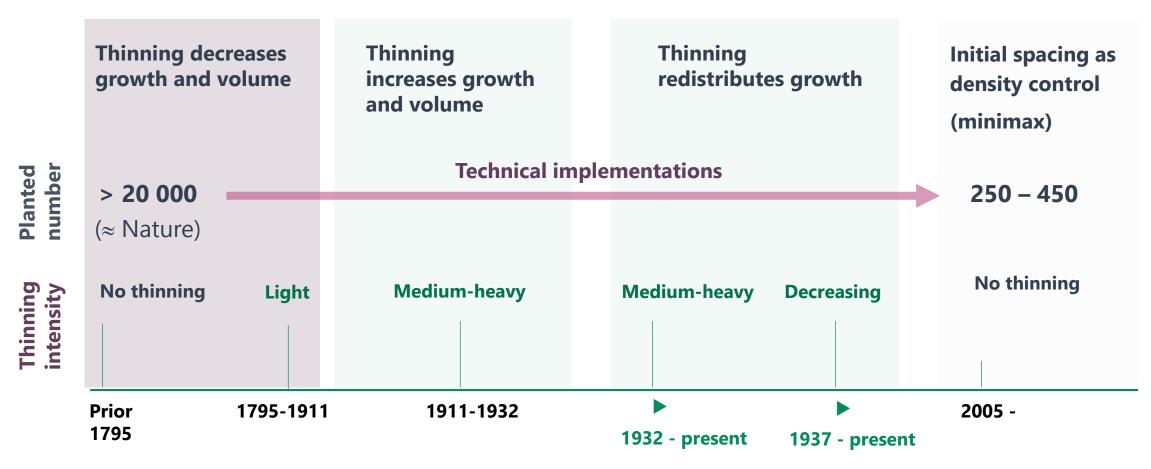
FOREM 2023 | INRAE Lessem, Grenoble 9-11 May 2023

Overview

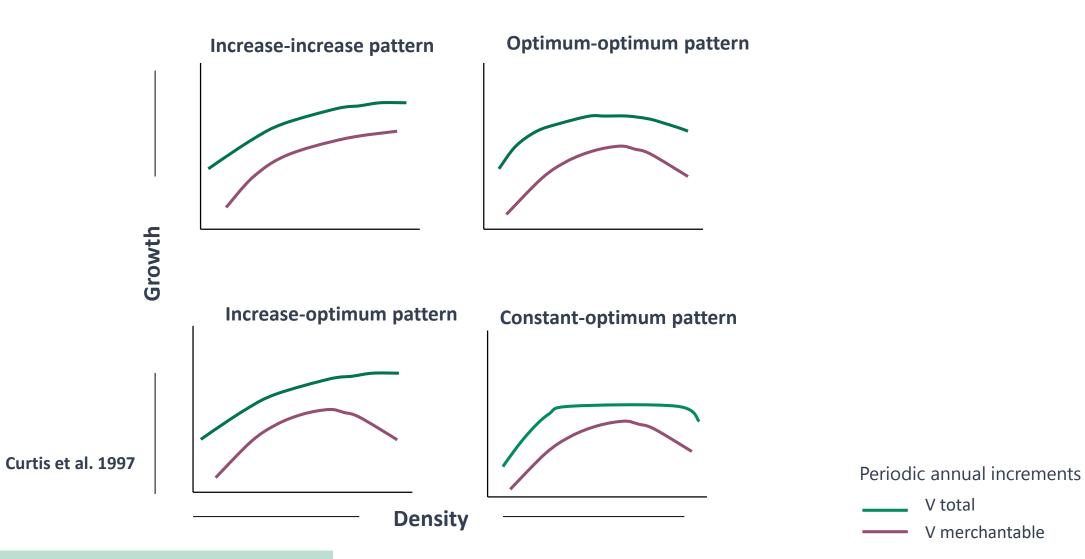
Influence of the thinning on the stand structure and yield maritime pine stands


- **1** Stand growth and thinning
- **2** Overview of thinning types
- **3** Maritime pine in Portugal
- **4** Traditional silvicultural guidelines

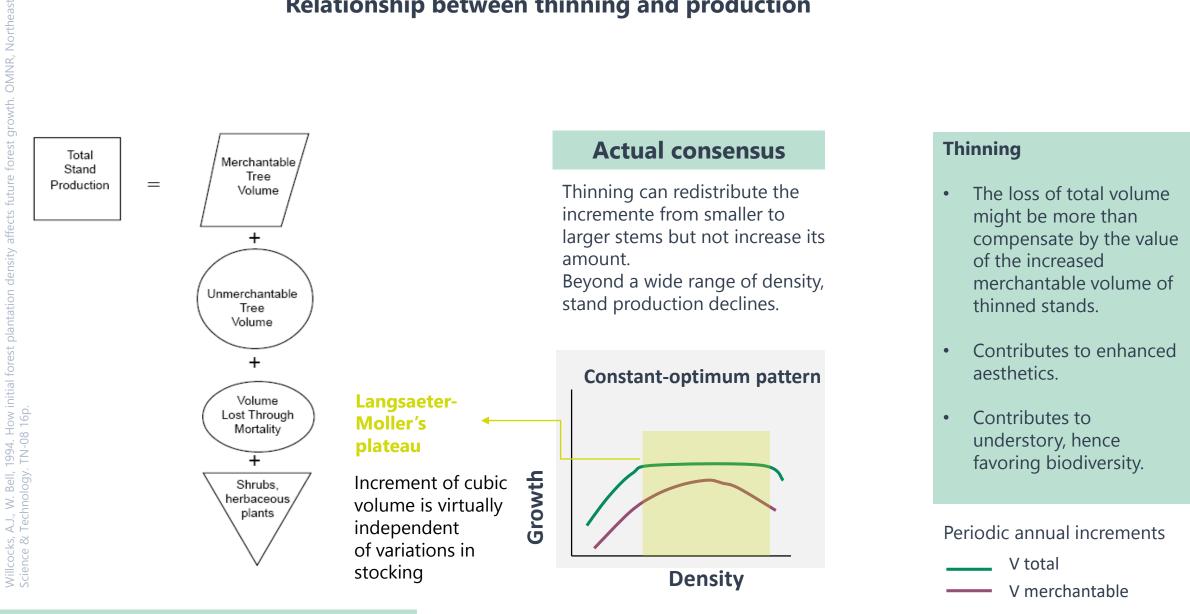
- **5** Designing alternative itinerairies with ModisPinaster
- **6** Influence of the thinning type on the stand structure and yield
- 7 Next steps



Thinning and Growth: A Full Turnaround (B. Zeide, 2001)


A major impetus for the origin and development of forestry has been the search for stand density that provides trees with "room to grow and none to waste." Is it possible to increase natural growth of forest stands by judicious removal of some trees?

Conceptual development


Relationship between thinning and production

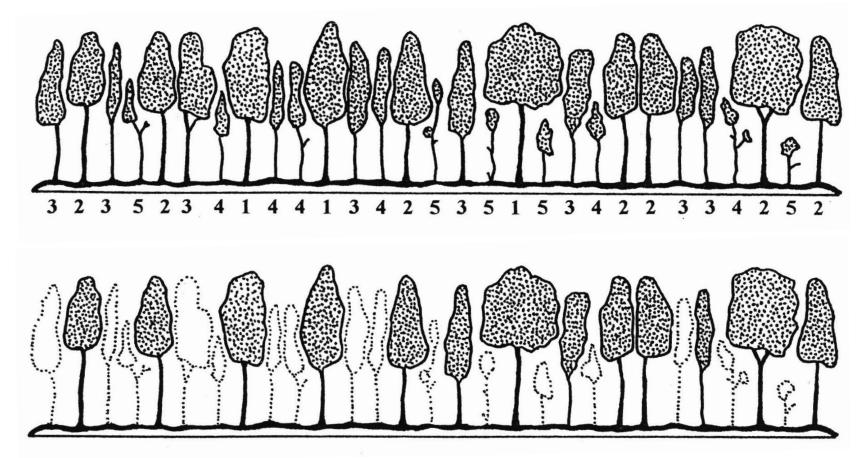
https://academic.oup.com/jof/article/99/1/20/4614220

V total


V merchantable

Relationship between thinning and production

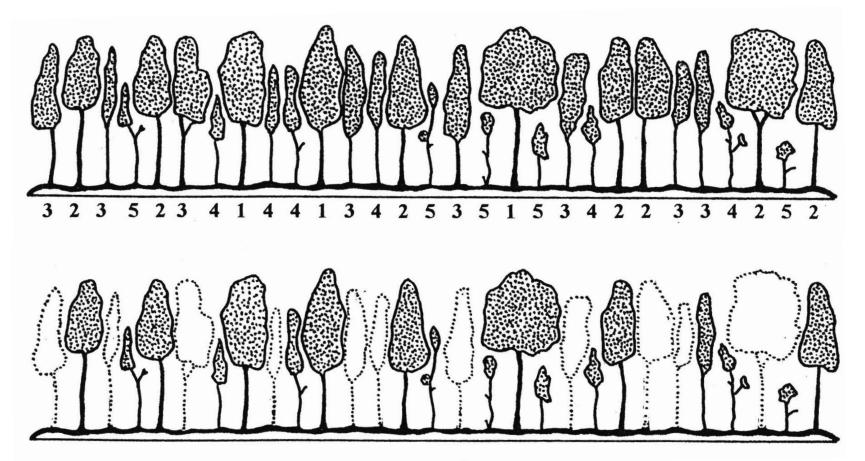
6


"The **total production** of cubic volume by a stand on a given site is, for all practical purposes, **constant and optimum for a wide range of density or stocking**. It can be decreased, but not increased, by altering the amount of growing stock to levels outside this range."

From below
From above
Mixed (selective)
Mechanical

Thinning type can be defined by the relationship between the classes and the position in the crown of the trees removed in relation to the trees in the main stand. However, other factors, such as stem and crown conformation, are also important. The type of thinning reflects a change in the spatial arrangement of trees within stands.

Thinning from below



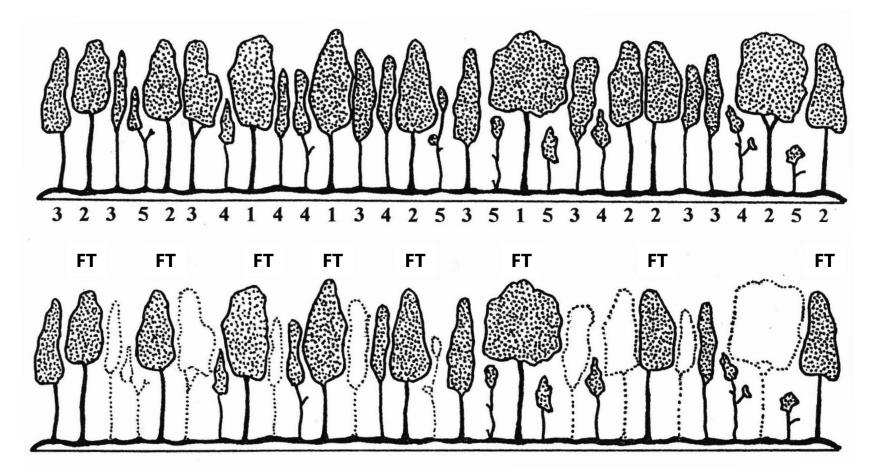
The main objective of is to favor the development of the best trees on the upper levels, those with larger dimensions and better crowns.

The dominated and hopeless individuals are removed first, and individuals from the codominant and dominant storeys where necessary (e.g. defective trees).

It presents better results in intolerant species, in which the individuals of the lower levels (dominated and subordinate), removing the trees from the upper levels, cannot compete and respond to defoliation.

Thinning from above

It is best suited for tolerant and semi-tolerant species to shade in pure stands, especially when there are enough trees of good characteristics in the lower levels. Not recommended to intolerant species, especially at advanced ages. The main objective of is to preserve until the end of the revolution the best trees of the dominant storey.


Predominantly trees from the upper storeys (dominant and codominant) that are in direct competition with the most promising trees are removed, giving the latter conditions for growth.

Individuals from the lower levels (dominant and subdominant) are preserved to promote the natural pruning of the selected trees.

2 Overview of thinning types

Forem 2023

Mixed or selective thinning

All trees of each class have to be examined to eliminate individuals that disturb the development of future trees, whatever their initial positions may be.

This type of thinning assumes the **selection of trees of the future** (those with better stems and crowns and more promising growth)

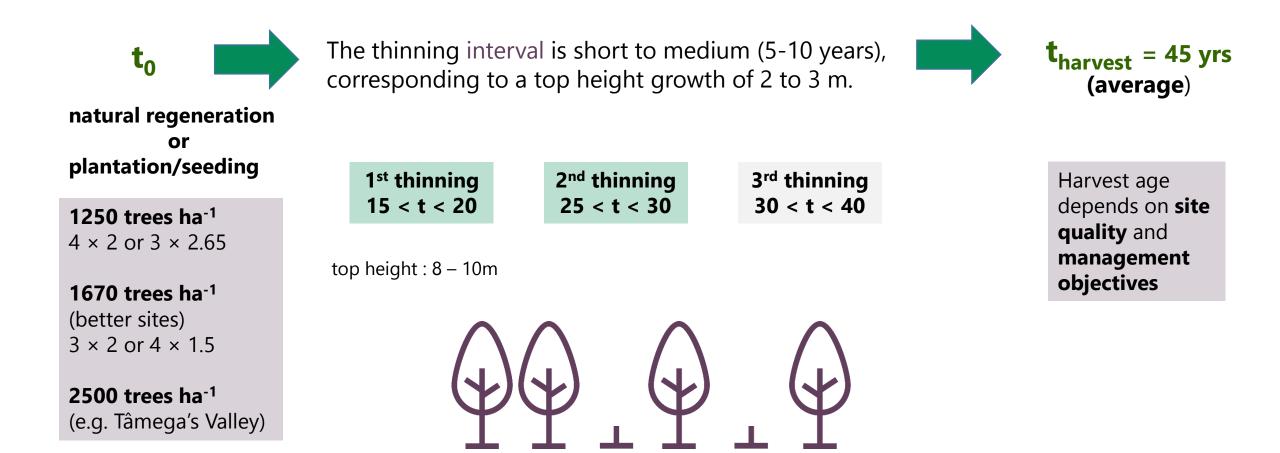
The trees of the future are selected, and the most direct competitors are removed. All others that could benefit the future trees are left in the stand.

Marking of future trees is not static but is re-selected and reclassified before each thinning.

2 Overview of thinning types

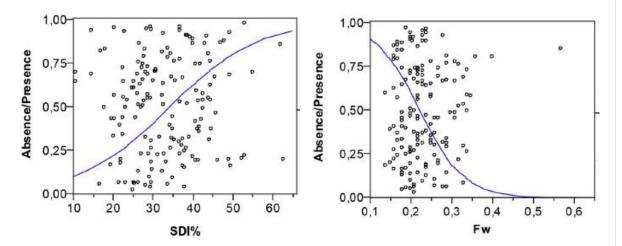
Pinus pinaster distribution and area occupation

Maritime pine (*Pinus pinaster* Ait.) is an important native conifer from the Western Mediterranean basin that occupies an environmentally diverse area. In southwestern Europe (Portugal, Spain, France, and Italy), this species covers over 3 million hectares.


In mainland Portugal, the maritime pine is the most represented native conifers species. It occupies approximately 714 thousand ha (**22% of the forest area**).

Threats: Forest fires, pinewood nematode

Maritime pine forest regenerated after fire. Tâmega's Valley (Seirós's Pilot forest, ForManRisk - https://formanrisk.eu/)


Typical silvicultural model

Examples of silvicultural guidelines proposals

(1) A silvicultural stand density model to control understory in maritime pine stands

(Fonseca and Duarte, 2017)

Logistic fit of understory vegetation by Stand Density Index (SDI) and spacing factor of Wilson (Fw) for log odds of Absence/Presence

Absence: stands with 0-10% understory vegetation cover; Presence: stands with understory vegetation cover > 10%. Adaptive management

	<i>Fw</i> = 0.23			<i>Fw</i> = 0.21		
t (years)	N, (trees ha ⁻¹)	dg, (cm)	<i>V</i> , (m³ ha ⁻¹)	<i>N</i> r (trees ha ⁻¹)	dg, (cm)	<i>V</i> , (m³ ha ⁻¹)
22 (1ª thin.)	844	9.6	36.8	574 (- 32%)	9.5 (- 1.0%)	24.2 (- 34.2%)
29 (2 nd thin.)	484	14.2	57.0	580 (+ 20%)	13.3 (- 6.3%)	60.0 (+ 5.3%)
36 (3 rd thin.)	229	19.0	57.1	274 (+ 20%)	17.8	59.2 (+ 3.7%)
43 (4 th thin.)	129	23.5	56.2	155 (+ 20%)	21.9 (- 6.8%)	58.5 (+ 4.1%)
50 (final cut)	514	31.5	374.7	617 (+ 20%)	29.9	409.1 (+ 9.2%)
50 (Total)	-	-	581.8	-	-	611.0 (+ 5.0%)

Summary of the output results obtained with ModisPinaster

$$N = 18877 \exp(-0.656 \, dg^{0.5})$$

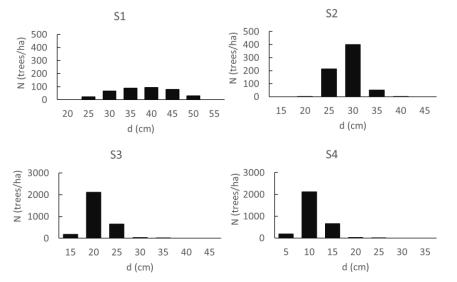
Expected stand density level that ensures a null or lower cover of the understory (Fw = 0.21) (2) Management of Maritime Pine: Energetic Potential with Alternative Silvicultural Guidelines.

Fonseca e Lousada (2021)

Scenarios

S1 1100 trees ha⁻¹ **S2** 2200 trees ha⁻¹ 45 years **S3** 40 000 trees ha⁻¹ **S4** 40 000 trees ha⁻¹ 20 years

Year	Scenario 1	Scenario 2	Scenario 3	Scenario 4
0	Site preparation	Site preparation		
0	Stand establishment: artificial regeneration (plantation) 1100 plants/ha	Artificial regeneration (seeding or plantation) 2200 plants/ha	Natural regeneration. It is assumed a value of 40,000 plants/ha	Natural regeneration. It is assumed a value of 40,000 plants/ha
7-8			Release operation (8 yr). Reduction of stand density to 30,000 trees/ha through systematic (mechanical) thinning by 3 m width strips, leaving 1 m wide strips with trees	Release operation (8 yr). Reduction of stand density to 30,000 trees/ha through systematic (mechanical) thinning by 3 m width strips, leaving 1 m wide strips with trees
3–10	Control of spontaneous vegetation (3, 8 yr)	Control of spontaneous vegetation (3, 8 yr)	Control of spontaneous vegetation (8 yr)	Control of spontaneous vegetation (8 yr)
8–12			Thinning from below (12 yr). Removal of a. 60% trees/ha within the 1 m-wide strips with trees	Thinning from below (12 yr). Removal of a. 50% trees/ha within the 1 m-wide strips with trees
15– 40	Three thinning from below (15, 25, 35 yr). Removal of a. 30% trees/ha per action	Three thinning from below (22, 29, 36 yr). <i>Fw</i> a. 0.21 after thinning	Four thinning from below (16, 20, 28, 36 yr). Removal of a. 35-40% trees/ha per action	Thinning from below (16 yr). Removal of a. 40% trees/ha
15– 45	Final harvest at 45 yr	Final harvest at 45 yr	Final harvest at 45 yr	Final harvest at 20 yr

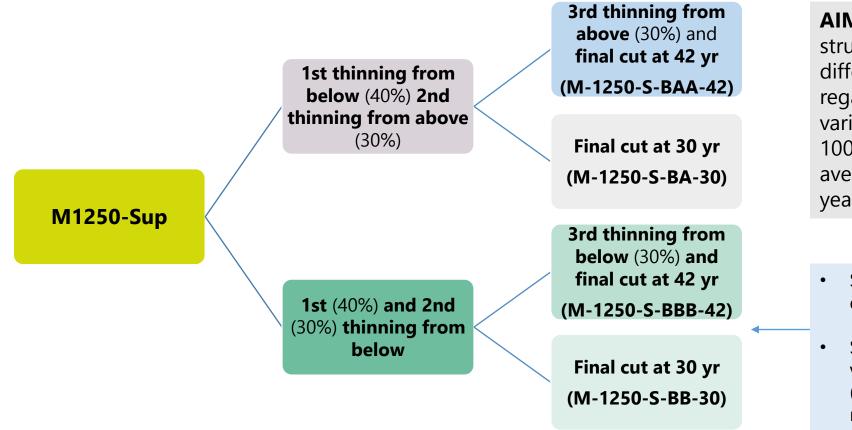

Characterization of the silvicultural models

(2) Management of Maritime Pine: Energetic Potential with Alternative Silvicultural Guidelines.

Fonseca e Lousada (2021)

t (yr)	Interv.	N _b (trees/ha)	N _r (trees/ha)	<i>V_r</i> (m ³ /ha)	dg _r (cm)	B _r (t/ha)	<i>C_r</i> (t/ha)	E _r (GJ/ha)
8	Tree release	40,000	30,000	-	-	(890)	(308)	(13,527)
12	Shrubs release	_	-	-	-	(3)	(1)	(65)
12	First thinning	10,000	6000	45	3.8	115 (62)	40 (29)	1744 (936)
16	Second thinning	4000	1600	27	6.5	35 (38)	13 (18)	594 (647)
20	Third thinning	2400	840	35	9.3	28 (35)	11 (17)	502 (607)
28	Fourth thinning	1560	470	59	13.9	36 (46)	15 (22)	657 (787)
36	Fifth thinning	1090	380	107	18.9	60 (51)	24 (24)	1079 (841)
45	Harvest	710	710	469	28.8	252 (139)	102 (35)	4549 (1201)
	Total (to	otal forest res	sidues)	741		527 (1219)	205 (454)	9125 (18612)

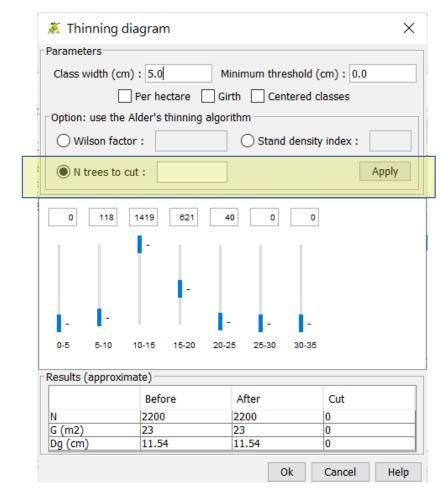
Summary of the output results obtained with ModisPinaster (S3)


Diameter distributions per 5 cm classes at harvest age (45 years for Scenarios 1–3, and 20 years for Scenario 4).

Scen.	t (yr)	N _r (tree/ha)	dg _r (cm)	V _r (m³/ha)	B _r (t/ha)	C _r (t/ha)	E _r (GJ/ha)
1	45	380	38.5 (+25%)	583 (-27%)	550 (-217%)	220 (-199%)	9247 (-200%)
2	45	670	28.9 (≈0%)	591 (-25%)	614 (-184%)	250 (-164%)	9623 (-188%)
3	45	710	28.8	741	1745	659	27737
4	20	3000	11.1 (-159%)	218 (-239%)	1318 (-32%)	490 (-35%)	20705 (-34%)

Total yield at harvest age obtained with the four scenarios.

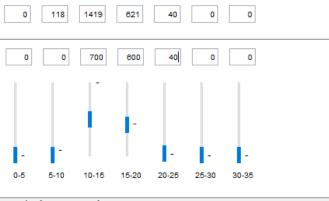
Effect of thinning type on stand structure and stand yield


Effect of thinning type on stand structure and stand yield

Characterization of the silvicultural models selected for the essay

AIM: to analyze differences in stand structure and production for different silvicultural models regarding **thinning types**, with variation in **initial density** (1250 vs 1000 trees), **site quality** (superior vs average) and **final harvest age** (30 years vs 42 years).

- Similar trials considering an initial density of N = 1000 trees ha^{-1} .
- Similar experiments with the two variations in the initial number of trees (1250 and 1000 trees ha⁻¹) but for medium-quality site.



Before thinning

Simulation options

- **1. Spacing factor of Wilson (Fw)**
- 2. Stand Density Index (SDI)
- 3. N trees to cut (thin. from below)

4. N trees to cut per diameter class (thin. from above)

Results (approximate) Before After Cut 2200 858 1342 G (m2) 5.53 23 17.47 Dg (cm) 9.06 11.54 12.87 Ok Cancel Help

🌋 Thinning diagram \times Parameters: Minimum threshold (cm): 0.0 Class width (cm): 5.0 Per hectare Girth Centered classes Option: use the Alder's thinning algorithm Stand density index : 23.51 Wilson factor : 0.24 N trees to cut : 500 Apply 39 0 1030 589 40 0 0 0-5 5-10 10-15 15-20 20-25 25-30 30-35 Results (approximate) After Before Cut 1700 500 2200 G (m2) 23 19.93 3.07 8.85 Dg (cm) 12.22 11.54 Ok Help Cancel

After thinning

Intermediate results

	SUP-1250-BA30 BAA42									
t (years)	Thin	Nr (trees/ha)	dgr (cm)	Vr (m³/ha)	Ba (Mg/ha)					
15	(1 st) B	500	8.8	11.8	6.8					
22	(2 nd) A	225	16.8	29.0	15.2					
30		525	24.3	183.5	90.6					
30 (Total)	Final cut			224.3	112.6					
30	(3 rd) A	158	21.8	43.0	20.5					
42	Final cut	367	34.3	321.6	157.3					
42 (Total)				405.4	199.8					

Effect of stand density

Same pattern for thinning from below

A higher density corresponds to a higher total stand volume and biomass and a lower mean diameter of the trees

				1								
		SUP-12	50-BA30 B	AA42					MED-12	50-BA30 B	SAA42	
t (years)	Thin	Nr (trees/ha)	dgr (cm)	Vr (m³/ha)	Ba (Mg/ha)		t (years)	Thin	Nr (trees/ha)	dgr (cm)	Vr (m³/ha)	Ba (Mg/ha)
15	(1 st) B	500	8.8	11.8	6.8	1250 trees ha-1	15	(1 st) B	500	7.7	8.5	4.9
22	(2 nd) A	225	16.8	29.0	15.2	1250 trees.ha ⁻¹	22	(2 nd) A	225	16.8	28.6	15.2
30		525	24.3	183.5	90.6		30		525	23.0	159.9	78.5
30 (Total)	Final cut			224.3	112.6		30 (Total)	Final cut			197.0	<u>98.6</u>
30	(3 rd) A	158	21.8	43.0	20.5		30	(3 rd) A	158	21.8	42.6	20.5
42	Final cut	367	34.3	321.6	157.3		42	Final cut	367	32.9	287.5	138.9
42 (Total)				405.4	199.8		42 (Total)				367.2	179.5
		SUP-10	00-BA30 B	AA42				MED-1000-BA30 BAA42				
t (years)	Thin	Nr (trees/ha)	dgr (cm)	Vr (m³/ha)	Ba (Mg/ha)		t (years)	Thin	Nr (trees/ha)	dgr (cm)	Vr (m³/ha)	Ba (Mg/ha)
15	(1 st) B	400	9.4	10.9	6.3		15	(1 st) B	350	8.3	7.2	4.2
22	(2 nd) A	150	18.8	19.3	10.1		22	(2 nd) A	195	16.8	25.2	13.1
30		450	25.9	180.8	90.9	↓	30		455	24.3	157.5	79.2
30 (Total)	Final cut			211	107.3		30 (Total)	Final cut			189.9	96.5
30	(3 rd) A	90	25.0	33.3	16.4	1000 trees.ha ⁻¹		(3 rd) A	91	26.8	38.9	19.9
42	Final cut	360 🤇	35.1	330.3	159.9		42	Final cut	364	33.7	294.6	147.8
42 (Total)				393.8	192.7		42 (Total)				365.9	185
Site	, auality	v. superior	['] Thinni	ng from	above		Site c	uality	average T	hinning	froma	bove

Site quality: superior. Thinning from above.

Site quality: average. Thinning from above.

Effect of site quality

✓ Consistent with expected pattern

Same pattern for thinning from above

Stands growing in better sites have higher values of total stand volume and biomass and lower mean diameter

		SUP-12	50-BB30 BI	BB42				MED-125	50-BB30 B	BB42	
t (years)	Thin	Nr (trees/ha)	dgr (cm)	Vr (m³/ha)	Ba (Mg/ha)	t (years)	Thin	Nr (trees/ha)	dgr (cm)	Vr (m³/ha))B
15	(1 st) B	500	8.8	11.8	6.8	15	(1 st) B	500	7.7	8.5	
22	(2 nd) B	225	15	22.1	11.3	22	(2 nd) B	226	13.8	18.3	Ι
30		525	24.3	183.5	90.6	30		524	23.0	157.7	
30 (Total)	Final cut			217.4	108.7	30 (Total)	Final cut			184.5	
30	(3 rd) B	158	22.5	46.1	22.2	30	(3 rd) B	158	21.2	39.2	
42	Final cut	367	34.1	318.4	154.2	42	Final cut	366	33.0	285.9	
42 (Total)				398.4	194.5	42 (Total)				351.9	
		SUP-10	00-BB30 BI	BB42				MED-100)0-BB30 B	BB42	
t (years)	Thin	Nr (trees/ha)	dgr (cm)	Vr (m³/ha)	Ba (Mg/ha)	t (years)	Thin	Nr (trees/ha)			Ba
15	(1 st) B	400	9.4	10.9	6.3	15	(1 st) B	350	8.3	7.2	
22	(2 nd) B	149	16.1	17.3	8.9	22	(2 nd) B	195	14.5	17.8	t
30		451	25.9	181.0	91.0	30	(= / =	455	24.3	157.5	t
30 (Total)	Final cut			209.2	106.2	30 (Total)	Final cut			182.5	t
30	(3 rd) B	90	24.0	30.5	15.0	30	(3 rd) B	91	21	22.5	t
42	Final cut	361	35.1	330.7	160.0	42	Final cut	364	33.7	292.0	t
42 (Total)				389.4	190.2		. mar out	001	0017	20210	1

Site quality: superior. Thinning from below.

Site quality: average. Thinning from below.

Effect of thinning type

Same pattern for superior site quality

Thinning from above yields higher stand volume and biomass. No clear pattern for average tree diameter

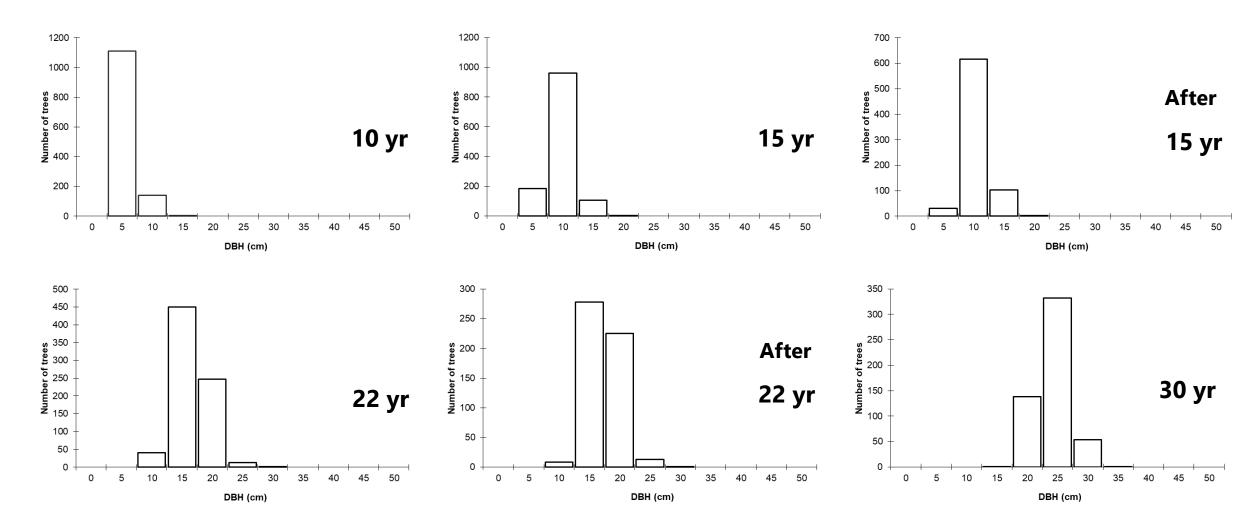
		MED-1250-BB30 BBB42								
t (years)	Thin	Nr (trees/ha)		Vr (m³/ha)Ba (Mg/ha						
15	(1 st) B	500	7.7	8.5	4.9					
22	(2 nd) B	226	13.8	18.3	9.3					
30		524	23.0	157.7	78.3					
30 (Total)	Final cut			184.5	92.5					
30	(3 rd) B	158	21.2	39.2	19.0					
42	Final cut	366	33.0	285.9	139.6					
42 (Total)				351.9	172.8					
		MED-100)0-BB30 B	BB42						
t (years)	Thin	Nr (trees/ha)	dgr (cm)	Vr (m³/ha)	Ba (Mg/ha)					
15	(1 st) B	350	8.3	7.2	4.2					
22	(2 nd) B	195	14.5	17.8	9					
30		455	24.3	157.5	79.2					
30 (Total)	Final cut			182.5	92.4					
30	(3 rd) B	91	21	22.5	10.8					
			22.7	202.0	146.0					
42	Final cut	364	33.7	292.0	146.9					

Site quality: medium. Thinning from below.

		MED-1250-BA30 BAA42								
t (years)	Thin	Nr (trees/ha)	dgr (cm)	Vr (m³/ha)	Ba (Mg/ha)					
15	(1 st) B	500	7.7	8.5	4.9					
22	(2 nd) A	225	16.8	28.6	15.2					
30		525	23.0	159.9	78.5					
30 (Total)	Final cut			197.0	<u>98.6</u>					
30	(3 rd) A	158	21.8	42.6	20.5					
42	Final cut	367	32.9	287.5	138.9					
42 (Total)				367.2	179.5					
		MED-100	00-BA30 B	AA42						
t (years)	Thin	Nr (trees/ha)	dgr (cm)	Vr (m³/ha)	Ba (Mg/ha					
15	(1 st) B	350	8.3	7.2	4.2					
22	(2 nd) A	195	16.8	25.2	13.1					
30		455	24.3	157.5	79.2					
30 (Total)	Final cut			189.9	<i>96.5</i>					
30	(3 rd) A	91	26.8	38.9	19.9					
42	Final cut	364	33.7	294.6	147.8					
42 (Total)				365.9	185					

Site quality: medium. Thinning from above.

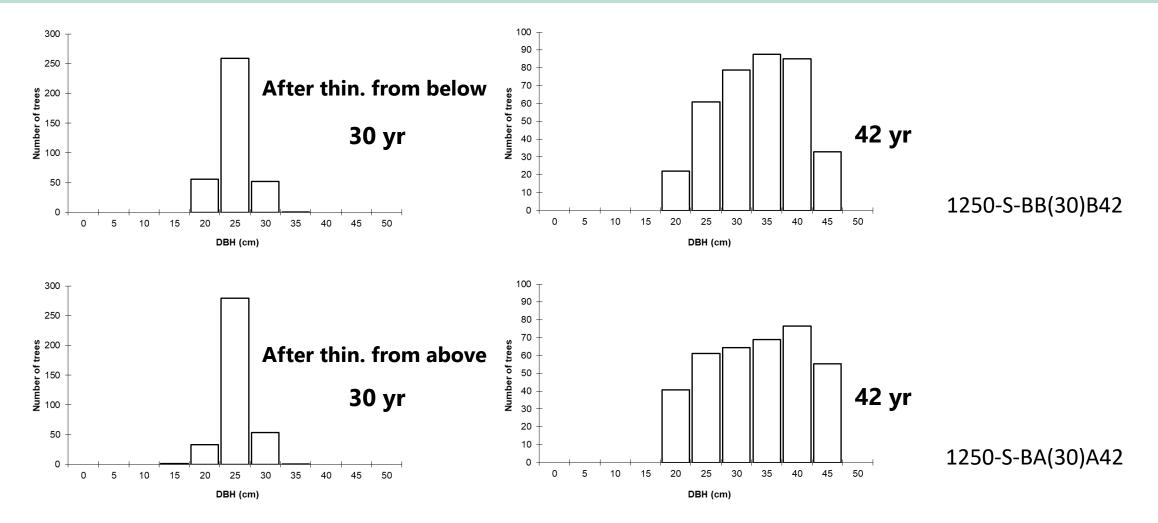
Effect of thinning type and harvest age


	Vr (m³/ha)		Ba (M		
Silvicultural model	Harvest age		Dif.	Harve		
	30	42		30	42	
SUP-1250-Thin. from below	217.4	398.4	181.0	108.7	194.5	85.8
SUP-1250-Thin. from above	224.3	405.4	181.1	112.6	199.8	87.2
Dif.	-6.9	-7	/ \	-3.9	-5.3	
SUP-1000-Thin. from below	209.2	389.4	180.2	106.2	190.2	84
SUP-1000-Thin. from above	211.0	393.8	182.8	107.3	192.7	85.4
Dif.	-1.8	-4.4		-1.1	-2.5	
MED-1250-Thin. from below	184.5	351.9	167.4	92.5	172.8	80.3
MED-1250-Thin. from above	197.0	367.2	170.2	98.6	179.5	80.9
Dif.	-12.5	-15.3	\ /	-6.1	-6.7	
MED-1000-Thin. from below	182.5	339.5	157.0	92.4	170.9	78.5
MED-1000-Thin. from above	189.9	365.9	176.0	96.5	185	88.5
Dif.	-7.4	-26.4		-4.1	-14.1	

Thinning from above yields higher stand volume and biomass than thinning from below.

From 30 to 42 years, the stand produces \cong 77 to 94% as up to 30 years.

Effect on stand structure

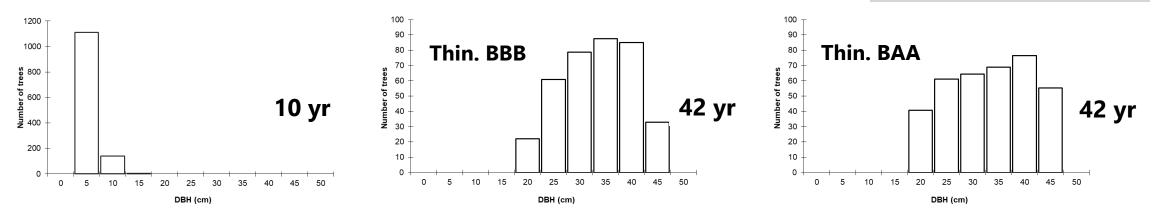

Site quality: Superior. Initial stand density: 1250 trees.ha⁻¹. Two thinnings from below at ages 15 and 22 yr.

Forem 2023

Effect on stand structure

Site quality: Superior. Initial stand density: 1250 trees.ha⁻¹. Thinning from below vs thinning from above at 30 yr.

Forem 2023


Advantages of thinning from above over thinning from below

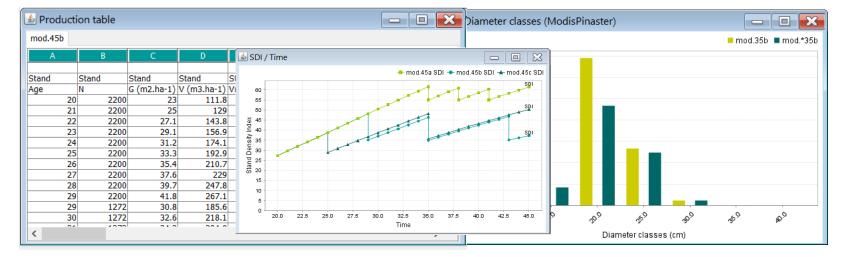
- Allows obtaining better trees in the term of exploitability, of larger average dimensions, with better stem, without prejudice to the total volume.
- Obtaining more valuable woody material in intermediate cuts, as a result of the vertical levels where the intervention is mainly focused, therefore capable of conferring positive profitability to the thinning operations.

Simulation results

No evident effects were noticed on average diameter.

Total volume was high with thinning from above.

Next steps


Continue the research and pursue simulations for:

- Higher initial densities in tree number
- $(2500 \text{ and } > 5000 \text{ trees } \text{ha}^{-1}).$
- Simulate tree removal in thinning from below and above with the iterative diagram. Analyse the results.
- Model the pattern of thinning from above.
- Create new functionality/module in ModisPinaster to simulate this type of thinning.

Abstraction

Are we missing the reality?

Playtime (1967) Jacques Tati

We are developing and gaining knowledge with the use of the simulators.

ModisPinaster has been supporting the design of silvicultural guidelines and helping with sustained decision making, in real cases and to prepare forest managers to adapt to changes.

Merci pour votre attention

Merci à Céline Meredieu et François de Coligny d'avoir rendu possible l'abstraction en incluant ModisPinaster dans la plateforme Capsis.

Merci à tous ceux qui contribuent au projet CAPSIS. Merci aux organisateurs de l'événement Forem 2023.

FORESTS & SOCIETY TOWARDS 2050

THE WORLD GATHERS IN STOCKHOLM 2024

Welcome to Stockholm June 23-29, 2024

Sweden in close partnership with the Nordic-Baltic countries

www.iufro2024.com | IUFRO2024@slu.se

IUFRO Interconnecting Forests, Science and People

Join the journey to IUFRO World Congress Stockholm 2024

STOCKHOLM 2024

THE WORLD GATHERS IN STOCKHOLM

- Foundations for innovation and collaboration
- Scientific solutions for a sustainable future
- 5 000 scientists from all over the world
- Dialogue with stakeholders
- Focus on next generations

Forem 202

www.iufro2024.com | IUFRO2024@slu.se

Abstracts will be accepted **until 2 June 2023**.

To apply follow the link: https://iufro2024.com/call-for-congress-abstracts/

Technical Theme 1 T1.5 Climate-smart pine forest management (Oral / Poster)

This session intends to address the issue of forest management adaptation to climate changes, with the focus on pine forests. Both adaptation and mitigation efforts are of interest. In this session we would welcome contributions that

- (i) implement adaptive concepts into forest management
- (ii) change stand structures and tree species composition in ways that make the resulting forest better adapted to the climate and maintain/increase genetic diversity
- (iii) use natural forest dynamics for optimizing stand development
- (iv) predicts, quantify and explore impacts of climate change on pine forests.

Organizers:

Mikolaj Lula, Emma Holmström, Teresa F. Fonseca, Santiago C. González-Martínez, Miren del Río, Sven Mutke

Co-organized by IUFRO WP 1.01.10