Capsis exercises

January 2020

François de Coligny, Nicolas Beudez

1. Create a new module called *Training* in Capsis

- Go to the Capsis installation directory (that is the capsis4 directory). All commands below must be typed from this installation directory.
- In a terminal, adapt and type this command...

For Windows:

ant create-module -Dname=training -Dprefix=Tra -Dauthor=F. de Coligny -Dinstitute=INRAE

For Linux/MacOS:

sh ant create-module -Dname=training -Dprefix=Tra -Dauthor=F. de Coligny -Dinstitute=INRAE

- You can verify that the etc/capsis.models file contains an entry for the new module (to do it, simply open this file).
- Customize the *idcard.properties* file (type + description) located in *src/training* directory.
- Compile...

For Windows: ant compile For Linux/MacOS: sh ant compile

Run Capsis...

For Windows: capsis For Linux/MacOS: sh capsis.sh

- In Capsis, go to the « Help » menu, then select « About Capsis » and select *Training* in the list. You can see informations about the *Training* module.
- Test the module under Capsis...
 - Project > New, then choose the « Training » module and click on the « Initialize » button.

🔞 🗊 Model initialisation

4.0

0.2

Growth parameters

D1:

p2:

р3:

 Load the input file: capsis4/data/training/training.inv or load a file created during the Java exercises session: trees.txt.

p4: [0,1]

✓ Ok ★ Cancel ← Help

Illustration 2: model initialisation

Inventory file: home/beudez/workspace/capsis4/data/training/training.inv Browse

Illustration 1: project creation

- Click Ok → the initial scene is built.
- o On the left panel, click on Scene Viewer > Simple viewer (double click).

Illustration 3: simple viewer

2. Random regeneration

Add a regeneration method to add new trees each year, located randomly on the terrain.

Notes:

- new trees have dbh = 3 cm and height = 1.3 m
- number of new trees: draw each year a random number between 0 and *regenerationMax*, where *regenerationMax* is an integer chosen by the user at the beginning of the simulation
- · choose new unique ids for the new trees

Helper:

- add regenerationMax in <u>TraInitialParameters</u> class (located in src/training/model directory)
- add a regeneration method in <u>TraModel</u> class (located in src/training/model directory)
- draw random numbers with the java.util.Random class
- · make a loop to create and add new trees
- you may pick ideas below...

create an initial dialog:

Illustration 4: initialisation of the model

• do an evolution of 20 years:

Illustration 5: *after an evolution of 20 years*

add translations for the initial dialog:

```
# In training/TraLabels_en.properties
TraInitialDialog.regenerationParameters = Regeneration parameters
TraInitialDialog.regenerationMax = Maximum number of new trees each year
# In training/TraLabels_fr.properties
TraInitialDialog.regenerationParameters = Paramètres de régénération
TraInitialDialog.regenerationMax = Nombre maximum de nouveaux arbres chaque année
```


Illustration 6: initialisation of the model

3. Mortality

Add some code in the *Training* module to remove trees, according to a global survival probability of 98 % each year.

Helper:

- trees that are not added in newScene « die »
- · you may pick ideas below...

```
double survivalProba = 0.98;
double proba = random.nextDouble (); // [0,1[
if (proba > survivalProba) ... // this tree is dead
```

• do an evolution of 15 years and look at the results after 10 years and 15 years:

Illustration 7: after an evolution of 10 years

Illustration 8: after an evolution of 15 years

4. Add a geometrical plot made of square cells

Use the default proposals of Capsis to build a rectangular plot made of square cells on the ground.

Helper:

- the rectangular plot must be constructed at the end of the project initialisation
- you may have a look in these classes to check the initialisation process...

TraInitialParameters TraModel TraInventoryLoader

expected result (here 15 cells):

Illustration 9: 15 square cells on the ground

🗖 tra. 10a - Inspe	cto	
(← (→) (△) (≤	qua	areCell: 1
Property		Value
area		100.0
cells		
class		class capsis.defaulttype.plotofcells.SquareCell
elementLevel		true
empty		false
hashCode		50edd92f
holder)	capsis.defaulttype.plotofcells.RectangularPlot (TraScene 10)
iGrid	$\overline{}$	0
id		1
immutable)	capsis.defaulttype.plotofcells.SquareCell\$Immutable@a869b84
iGrid		0
level		1
mother		false
origin		(2.864, 19.738, 0)
plot	···>	capsis.defaulttype.plotofcells.RectangularPlot (TraScene_10)
position		[0, 0]
serialVersionUID		1
shape)	java.awt.geom.Rectangle2D\$Double[x=2.864452838897705,y=19.737859
toString	Г	SquareCell [0, 0]
treeLevel		true
treeNumber		13
trees)	List - 13 items
vertices	···)	List - 4 items
width		10.0
×		2.864452838897705
xCenter		7.864452838897705
У		19.737859696149826
yCenter		24.737859696149826
Z		0.0
zCenter		0.0

Illustration 10: Cell[0,0] contains 13 trees at date 10

5. Make a graph: N / Time

Write adaptations to make the Capsis graph « N / Time » compatible with the *Training* module.

Notes:

- see the capsis.extension.dataextractor.DETimeN class
- the matchWith () method tests compatibility
- the referent is a reference to the model class (here *TraModel*)
- what do you have to change to make this chart compatible ?

Helper:

- do not change anything in the chart class (generic)
- the changes must be done in the Training module classes
- look at the *TraMethodProvider...*

```
capsis.util.methodprovider.NProvider;
public class TraMethodProvider implements ...NProvider... {

/**
    * Number of trees.
    */
public double getN (GScene stand, Collection trees) {
    if (trees == null) {return -1;}
    return trees.size ();
}
```

expected result:

Illustration 11: number of trees over time

6. Script

Adapt the script example in *training/myscripts/* to load your own *treeFile*, set the *regenerationMax* parameter to 5 per year, and change the evolution stage to reach 100 years, performing an intervention every 25 years.

Helper:

you may pick ideas below...

```
Linux: sh capsis.sh -p script training.myscripts.SimpleScript
Windows: capsis -p script training.myscripts.SimpleScript
import capsis.kernel.extensiontype.*;
import capsis.extension.intervener.*;

i.regenerationMax = 5;
s.init (i);

Step step = s.evolve (new TraEvolutionParameters (25));

// Intervention: cut tree between 5 and 15m height
Intervener thinner = new DHAThinner (DHAThinner.HEIGHT, 5, 15);
step = s.runIntervener (thinner, step);

date = step.getScene ().getDate ();
```

expected result:

Illustration 12: the final scene at year 100 after the last cut

Illustration 13: number of trees over time

7. Regeneration around the mothers

Write an alternative regeneration method: only trees older than 20 years can regenerate, they give birth to at most *regenerationMax* trees and these new trees are located around their mother, at a maximum distance (m) of: *maxDistance* = *mother height* / 2.

Helper:

· you may pick ideas below...

```
List copy = new ArrayList (newScene.getTrees ());

for (Object o : copy) {
	TraTree mother = (TraTree) o;

double maxDistance = mother.getHeight () / 2d;

double x0 = mother.getX ();

for (int i = 0; i < n; i++) {
	double distance = random.nextDouble () * maxDistance;
	double alpha = random.nextDouble () * 2 * Math.PI;
	double x = x0 + Math.cos (alpha) * distance;
	newScene.addTree (t);...
```

expected result:

Illustration 14: scene at date 10 with regenerationMax = 10