Java training

AMAP

An introduction to Java

February 2018

Francois de Coligny — Nicolas Beudez

INRA - UMR AMAP
AMAP botAny and Modelling of Plant Architecture and vegetation

Insthiurt de recherche

AR AT T
ProLr he i et w

J cirad @ —INRA LEES urme-

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Contents

Java training - Contents

Introduction

- history

- specificities

- programming environment
- installation

Bases
Object oriented programming (O.0.P.)

Resources

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Introduction

History

James Gosling and Sun Microsystems
- Java: May 20, 1995

-Java 1 -> Java 8 (i.e. 1.8), March 2014
- Oracle since 2010

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Introduction
Specificities

Java is an object oriented language

- clean, simple and powerful
- different kinds of languages:
- R, Python: interpreted languages

input data

|
\l

P interpreter

source code P> output data

- Java: compiled and interpreted language

source code

\ input data
compiler |
¢ \/
interpreter
byte code » (Java virtual machine JVM)

- static typing (checks during compilation)

object = a software brick (see later)

- C, C++, Fortran: compiled languages

source code

v .
compiler input data

\l \4
i ____w Operating output
binary code) systern - > o

Java is portable (Linux, Mac,

‘ Windows): "write once, run

everywhere"

output
> data

- simpler than C++ (automatic memory management, no pointers, no headers...)

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Introduction

Programming environment a‘ﬁ% p

) contains the ‘java’ interpreter
Java environment /
- JRE (Java Runtime Environment) JRE + the javac’ compiler + ..
- JDK (Java Development Kit)

Several versions
- Jave SE (Standard Edition)
- Java EE (Enterprise Edition - Web)
- Java ME (Micro Edition)

Editors
- simple editors: Notepad++, TextPad, SciTE, gedit (syntax coloring...)
- IDEs (Integrated Development Environment):
Eclipse, NetBeans (completion, refactoring...)

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Introduction
Installation a‘ﬁ% p

Windows/Linux
- download and install the JDK (Java SE 8)
- modify the PATH environment variable
add the java/bin/ directory at the beginning of the PATH variable
e.g. C:/Program Files/Java/jdk1.8.0 _102/bin (Windows)
/home/beudez/applications/jdk1.8.0 _102/bin (Linux)

- install text editor:
TextPad or Notepad++ (Windows)
gedit, SciTE (multi-platform)

Check the installation
- in a terminal: java -version and javac -version

beudez@nicolas-HP:~5 java -version

java version "1.8.0_ 182"

Java(TM) SE Runtime Environment (build 1.8.0_182-bi4)

Java HotSpot(TM) 64-Bit Server VM (build 25.102-b14, mixed mode)

beudez@nicolas-HP:~S
beudez@nicolas-HP:~5 javac -version
javac 1.8.0_ 182
beudez@nicolas-HP:~$ |}

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Bases

Bases

- a Java application

- the development process
- variables, simple types

- operators

- boolean calculation

- mathematical tools

- arrays

- conditions: if, else if, else
- loops: while, do... while

- loops: for

- loops: continue or break
- runtime exceptions

- exceptions management

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Bases

A Java application aﬁp

/—.
comments

this package is a namespace,
matches a directory with same name
-> training/Training.java

package training;
/** Training application

*/ a public class: class name = filename (Training.java
public class Training { o P (g.java)

/** Main method . = .

* / o« the application entry point
static public void main (String[] args) {

// Prints to screen

System.out.println ("The Java training exercices"); o)
} commands terminated by ;'

prints to screen

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Bases

A Java application AW A P

- Java programs are written with a text editor in files with a ".java' extension: sources files

- applications are .java files with a public static void main(...) {...} method

T

& - o training & - o0 Training.java (~/workspaceftrainingDir/training) - gedit

< | > + training Q = #H Vv File Edit View Search Tools Documents

Name * Size Type Modified & g Open ~ ES&VE =, @ Undo I -
=| Training.java 230 bytes Text 14:23

= Training.java x
package training;

J** Training application
*/

public class Training {

/** Main method
*/
static public void main (Sstring[] args) {
// Prints to screen
System.out.println ("The Java training exercices");

}
1

Java = Tab Width: 8 ~ Ln14, Col 2 INS

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Bases

A Java application

- to compile a Java application, use the javac compiler (part of the JDK) in a terminal

- returns a Java byte code file: Training.class

r N |
® - o0 coligny@marvin-13: ~/workspace/ftrainingDir x[-—10

Flle Edit VlewSearch Terminal Help . . : — - : < tralning Q = ~

coligny@marvin-13:~/workspace/trainingDir$ javac training/Training.java

coligny@marvin-13:~/workspace/trainingDir$ Name * | Size Type Maodified

& Training.class 446 bytes Unknown 14:40

| Training.java 230 bytes Text 14:23

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Bases

11

A Java application a’ﬁ% p

- to run a Java application, use the java interpreter (or Java Virtual Machine, JVM) in a terminal

— 0 coligny@marvin-13: ~fworkspace/trainingDir

File Edit View Search Terminal Help
coligny@marvin-13:~/workspace/trainingDdir$ java training.Training
The Java training exercices
coligny@marvin-13:~/workspace/trainingDir$ I

the result

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Bases

The development process

create / modify source code

|
A4

source code (.java)

v

compile source code (with javac)

\4

i\\\\\

bytecode (.class)

compilation errors

v

run bytecode (with java)

v

result

*—

runtime errors /
incorrect result

12

r 7 AMAP
Xx1—10
File Edit View Search Tools Documents
o |l OPen ~ iSave = @ Undo v
= Training.java x
package training; r -
xi1—10
/** Training appliFjle Edit View Search Tools Documents
*/
public class Train | o | OPen - ESave [& Undo v

/** Main method | = Trainingjava x
*/ package training;
statuc public vao

/f Prints to s /** Training application
System.out.pri =+

} public class Training {

} /** Main metheod
*/
static public wvoid main (String[] args) {
J/ Prints to screen
System.out.println ("The Java training exercices");

1
Je}
[@ — 0 coligny@mar
File Edit View Search
coligny@marvin-13:
Java ~ Tab Width: 8 - Lng, Col8 INS
% - o coligny@marvin-13: ~fworkspace/trainingDir |

ARG NGLEIRAN R EM File Edit View Search Terminal Help
coligny@marvin-13:~/workspace/trainingDir$ javac training/Trai
ning. java
coligny@marvin-13:~/workspace/trainingDir$ I

errors fixed, result is correct

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Bases

Variables, simple types

AMAP
Variable
- a variable has a type and holds a value
- a variable name starts with a lowercase letter, e.g. myVariable
Type | Size (bits) Minimum value Maximum value Example
byte 8 -128 (= -2%/2) 127 (= 28/2-1) byte b = 65;
Integer | short 16 -32 768 (= -2'%/2) 32 767 (= 2'%/2-1) short s = 65;
types: int 32 -2 147 483 648 (= -2%/2) -2 147 483 647 (= 2%/2-1) int i = 65;
-9 223 372 036 854 775 808 9223 372 036 854 775 807 _)
Eloati Type Size (bits) Absolute minimum value Absolute maximum value Example
oatin
types: 9 float 32 1.40239846 x 10 3.40282347 x 10°® float f = 65f;
double 64 4.9406564584124654 x 10°%** | 1.797693134862316 x 10°® | double d = 65.55;
Character: Type Size (bits) Example Declaration - value assignment
char 16 char c = 'A'; o 7
int 1 = 0; e
double a = 5.3;
boolean found = false;
Boolean: Type Size (bits) Example char letter = "2';
boolean 1 boolean b = true; ST el = BERECE S O I

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

not a simple type (seen later)

14
Java training > Bases

Operators a‘ﬁ&g p

index = index + 2;

Arithmetic /
- simple: +, -, *, |, % / g
- increment / decrement; ++, --

- combined: +=, -=, *=, |= /

- precedence with parentheses o @*b*c

index += 2;

- comparison: <, <=, >, >=, == I=

- boolean: &&, ||, ! (see next slide)

String concatenation:

Beware of the int division “a string” + something turns something into a String
and appends it

double r
double s

3d / 2d;
3/ 2;

System.out.println ("r: "+r+" s: "+s);

coligny@marvin-13:~/workspace/trainingDir$ javac training/PrimitiveTypes.java
coligny@marvin-13:~/workspace/trainingDir$ java training.PrimitiveTypes

r: 1.5 s: 1.0

Caution /

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Bases

Boolean calculation

Boolean variables are true or false

- boolean v = true;

- AND: &&

- inclusive OR: ||

- NOT: !

- test equality: ==

- test non equality: 1=

- use () for precedence

(a<b) && (c<d)

is true if the two expressions a<b and c<d are both true, is false otherwise
(a<b) || (c<d)

IS true if at least one of the two expressions a<b and c<d is true, is false otherwise
I(a<b)

IS true if the expression a<b is false, is false otherwise (same value than a>=b)

// Did we find ?
boolean found = isFileInSystem("trees.txt");
boolean trouble = !found && fileRequested;

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Bases

Mathematical tools

Constants
- Math.Pl, Math.E

Trigonometry and other operations
- Math.cos (), Math.sin (), Math.tan ()...

- Math.pow (), Math.sqrt (), Math.abs (), Math.exp (), Math.log ()...
- Math.min (), Math.max (), Math.round (), Math.floor (), Math.ceil ()...

- Math.toDegrees (), Math.toRadians ()...

// Square roo

double a =
double b =
double c =

System.out

EE
4;
Math.sqrt(a * a + b * b);

.println("c: " + c);

coligny@marvin-13:~/workspace/trainingDir$ java training.PrimitiveTypes
5.0

c:

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

17
Java training > Bases

Arrays AW A P

- 1, 2 or more dimensions arrays

- managed by references

- dynamic allocation: with the new keyword
- null if not initialised

- can not be resized

- access elements with the [] operator

- indices begin at 0

- size: myArray.length

null ‘null ‘null ‘null ‘null ‘null ‘null ‘null ‘null ‘null ‘null ‘Bob ‘

String[] a = new String[12]; ,ﬂﬂﬂﬂﬂ’gﬂﬂﬂﬂ,,ﬂ--~’--‘

a[ll] = "Bob";
‘ Jack ‘ William ‘ Joe ‘

String[] b = {"Jack", "william", "Joe"};/////”/’/////'
int size = 4: /’0 o fo Jo 2 dimensions
double[] ¢ = new double[size]; o
double[][] d = new doublel4][6]; — — S S
d[@][Z] = 3d : 0 0 (0] 3 (0] 0 0
d[3][5] = 1d ; 1 0) 0) 0 0

2 0] (0] 0 (0] 0 [¢]
// Index error: max is d[3][5]
System.out.println (d[4]1[6]); 8 @ | @ | | J1

\A
Exception in thread "main" java.lang.ArraylndexOutOfBoundsException: 4
at training.Training.main(Training.java:31) e——— a runtime exception

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Bases

Conditions: if, else if, else

Tests a simple condition

- can be combined

// Simple if
if (i == 10) {

// do something
}

// Complex if

if (count < 50) {
// do something

} else if (count > 50) {
// do something else

} else {
// count == 50

}

// Boolean expression
if (index >= 5 && !'found) {
System.out.println ("Could not find in 5 times");

}

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

18

AMAP

Java training > Bases

Loops: while, do... while

Loop with condition

- while (condition) {...}
- do {...} while (condition);

while:
condition is tested first

int count = 0;

while (count < 10) {
count++;

}

System.out.println ("count:

count: 10

"+ count);

do... while:
condition is tested at the end
-> always at least one iteration

int count = 0;
do {
count++;
} while (count < 10);

System.out.println ("count: " + count);

test is at the end
count: 10

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Bases

Loops: for

Loop a number of times

- for (initialisation; stop condition; advance code) {...}

// With an array fromOto 11
int[] array = new int[12];
int sum = 0 ;
for (int i = 0; i < array.length; i++) {
array[i] = 1i;
sum += array[i];

}

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Bases

Loops: continue or break

// Search an array fromOto 11
int sum = 0;
int i = 0;
for (i = 0; i < array.length; i++) {
if (array[i] == 0) continue;
sum += array[il;
if (sum > 50) break;

}

System.out.println ("i: " + i+" sum: " + sum);
1: 160 sum: 55

- an internal continue jumps to the next iteration
- an internal break gets out of the loop

- for all kinds of loops (for, while, do while)

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Bases

Runtime exceptions

Something wrong during the execution

- could not be checked at compilation time

- e.g. try to access to an element outside the bounds of an array
-> java.lang.ArraylndexOutOfBoundsException

- e.g. try to use an array that was not initialised
-> java.lang.NullPointerException

- e.g. try to read a file that could not be found
-> java.io.FileNotFoundException

- exceptions stop the program if not managed...

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Bases

Exceptions management aﬁ% g

Exceptions can be managed everywhere
-> use a try / catch statement

this file does not exist

-1- this code raises an exception

String fileName = "wrongName";
try {
BufferedReader in = new BufferedReader (new FileReader (fileName));
: String str;
-2- this code while ((str = in.readlLine ()) != null) {
is skipped //process (str);
}
in.close();
} catch (Exception e) { P
///////. System.out.println ("Trouble: " + e);
} .\
-3- the catch -4- the trouble is reported
clause is evaluated catch should never be empty!

Trouble: java.io.FileNotFoundException: wrongName (No such file or directory)

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Object oriented programming

Object oriented programming (O.0.P.)

Java is an object oriented language...

- encapsulation - static method and variable
- vocabulary - interface

- class - abstract class

- properties - the 'Object’ superclass

- constructor - enums

- instance(s) - polymorphism

- method - cast using the ‘instanceof’ operator
- calling methods - packages and import

- memory management - lifetime of variables

- inheritance - Java reserved keywords

- specific references - Java modifiers

- constructors chaining
- method overloading / overriding

Not presented here:

- static initializer
- nested class

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

25

Java training > Object oriented programming
Introduction to object oriented programming (O.P.P.) ;{ﬁ-p
- The O.0.P.

- Is based on structured programming
- contributes to the reliability of softwares

- makes it easy to reuse existing codes
- introduces new concepts: object, encapsulation, classe, inheritance

- In O.0.P. a program implements different objects (= a software brick).

- Different kinds of objects:

\ /4/ 4/4, 4,

s} Pl

/S

a list of trees (‘organizational’ object) \

a tree 3D viewer (‘graphical’ object)

a tree (‘physical’ object)

and many others...

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Object oriented programming

Encapsulation

Bundle data and methods operating on these data in a unique container:

-> the object

Hide the implementation details to the users (developers) of the object, they only know
its 'interface’ (interface = the functions that one wishes to show to the user)

package training;

/** A simple tree
*/
public class Tree {

// diameter at breast height, cm
private double dbh;

public Tree () {}

public void setDbh (double d) {
dbh = d;
}

public double getDbh () {
return dbh;

} |

T .- data

methods operating on

/ these data

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Object oriented programming

Vocabulary a‘ﬁ&a p

Class
- a class = a new data type
- source files describe classes

Object
- instance of a class at runtime
- memory allocation
- several objects may be build with the same class

Instance variable (iv)
- variables of an object
- (field, attribute, member data)

Method
- function of an object
- (procedure, member function)

Property
- instance variable or method

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Object oriented programming

Class

package training;

/*¥* A simple tree
*/
class — ¢ public class Tree {
// diameter at breast height, cm
instance variable ——e private double dbh;

public Tree () {}

//////////. public void setDbh (double d) {
% " dbh = d;
\\\\\\\\\\\. }

public double getDbh () {

return dbh;
}

methods

A class is a new data type
e.g. int, double, float, boolean, String, Tree...

Scope modifiers for the properties

- public . visible by all (interface)
- protected : visible in the package (and in later seen subclasses...)
- private . scope is limited to the class (hidden to the others)

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Object oriented programming

Properties

Instance variable

private double dbh;

_ TR

scope modifier type name

Method

scope modifier type name parameters

NS

public void setDbh (double d)
dbh = d;

\
. Arule: |

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Object oriented programming

Method

Classes contain instance variables and methods

- a class can contain several methods
- if no parameters, use ()
- if no return type, use void

package training;

/** A simple tree
*/

public class Tree {
// diameter at breast height, cm
private double dbh;

constructors are particular methods
without a return type

public Tree () {}

. / setDbh () method: 1 parameter
public void setDbh (double d) {

dbh = d;
} . .
getSomething () is an accessor
public double getDbh () { returns something
return dbh;
}

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Object oriented programming

Constructor

- particular method called at object creation time

- same name than the class (starts with an uppercase letter)
- ho return type

- deals with instance variables initialisation

- several constructors may coexist if they have different number and/or types of parameters

package training;

/** A simple tree
*/

public class Tree {
// diameter at breast height, cm
private double dbh;

public Tree () {}

public Tree (double d) {

dbh = d; regular method with a parameter
}
public void setDbh (double d) {

dbh = d;
}
public double getDbh () {

return dbh;
} Notes:

this default constructor does nothing particular
} => ‘dbh’ is a numeric instance variable

=> set to 0 automatically
the other constructor initializes ‘dbh’

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

a default constructor (no parameter)

another constructor (takes a parameter)

Java training > Object oriented programming

Instance Vocabulary:
object = instance
Vocabulary:
o the properties of the object
Instanciation the properties of the class
- creates an instance of a given class = IEEIEE (Bl ES e
- l.e. an object

-1- declaration of a reference \. // make an instance of Tree
type + name Tree t;

no object created yet t = new Tree (); o\
-2- creation of the object

// same than . e
=>
Tree t = new Tree (): new Instanciation
class name = constructor name

What happens in memory

- hew --> instanciation = memory reservation for the instance variables + the methods
- the constructor is called (initialisations)

- returns a reference to the created object

- we assign it to the reference named 't'

Tree
methods

| ivs |
/ }) a Tree object in memory:

| | instance variables + methods

a reference
to use the object

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Object oriented programming

Instances

Creation of several objects

// create 2 trees . .
Tree t1 = new Tree (); &e——— _ 2 times new => 2 objects

Tree t2

new Tree ();

What happens in memory

- 2 times ‘new’: 2 memory reservations for the instance variables of the 2 objects (their ‘dbh’
may be different)

- the constructor is called for each object

- the methods of the 2 objects are shared in memory

- each ‘new’ returns a reference to the corresponding object

- we assign them to 2 different references named 't1' and 't2'

Tree
v methods

t1 —p»| Tree
ivs

e Tree
T e t2)

2 references 1vs

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Object oriented programming

Instances
Using the references t2 =t Tree
v methods
t1 ——p»| Tree
ivs
// Create 2 trees 4
Tree tl1 = new Tree (); /
Tree t2 = new Tree (); t2 Tree
ivs
Tree _ _
y| methods - both ‘t1’ and ‘t2’ point to the first tree
11 — | Tree - the second tree is 'lost’
ivs
t2 ——p»| Tree ‘
ivs tl = null;
Tree
v methods
tl Tree
1ivs
2 ——pp| Tree
ivs

- ‘t1’ points to nothing
- ‘t2’ points to the second Tree
- the first Tree is 'lost'

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Object oriented programming

Calling methods

Method returning nothing (void)
reference.method (parameters);

Method returning something

returnType variable = reference.method (parameters);

Définition de la classe Tree

(fichier Tree.java)

package training;

/** A simple tree
W

public class Tree {
// diameter at breast height, cm
private double dbh;

public Tree () {}

public void setDbh (double d) {
dbh = d;
}

public double getDbh () {
return dbh;
}

—_—>

Utilisation de |la classe Tree
(fichier Training.java)

// Create a tree
Tree t1 = new Tree ();

// Set its diameter
tl.setDbh (12.5);

// Print the diameter
double dl1 = tl.getDbh ();

System.out.println ("tl1l dbh: " + dl);
[J
/
/
/
System is a class

out is a static public instance variable of type PrintStream
println () is a method of PrintStream

writing in out writes on the 'standard output'

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Object oriented programming

Memory management

- objects are instantiated with the keyword new => memory allocation
- objects are destroyed when there is no more reference on them => garbage collecting
-> this process is automatic

-> to help remove a big object from memory, set all references to null

// declare two references
Tree t1 = null; e — no object created yet

// create an object (instanciation)
tl = new Tree ();

// the object can be used
double v = tl.getDbh ();

// set reference to null
tl = null;

the object will be destroyed by the garbage collector

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Object oriented programming

] UML notation &
Inheritance Tree AMAP

How to create a spatialized tree ? S| M

Simple manner results in duplicates...
package training;

/** A tree with coordinates
*/
public class SpatializedTree { =
| // diameter at breast height, cm |
' private double dbh;
// X, y of the base of the trunk (m)

private double x;

package training;

/** A simple tree

te doubl ;
public class Tree { private doubte y
// diameter at breast hei , €m ** Default t t
private double dbh; /*/ erau constructor
. ublic SpatializedTree () {
public Tree () {} P setXY ?0' 0):
public void setDbh (double d) { ,} fffffffffffffffffffffffffff ;
el S Gl \public void setDbh (double d) { |
¥ . dbh = d; |
public double getDbh () { L} ffffffffffffffffffffffffffff J
return dbh; ’\fpumudoumgewmn{ ******** |
} | return dbh; !
} oo .
o] publ%c void setXY (double x, double y) {
fichier Tree.java this.x = x;
i this.y = vy;
}

public double getX () {return x;}
public double getY () {return y;}

fichier SpatializedTree.java

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Object oriented programming

Inheritance

UML notation

Tree

!

38

¥

AMAFP

SpatializedTree

Reuse a class to make more specific classes

- e.g. a tree with coordinates

- inheritance corresponds to a 'is &' relation ¢ aspatialized tree is a tree (with coordinates)
- a subclass has all the instance variables and methods of its parent: the superclass

- all classes inherit from the Object class

- multiple inheritance is not allowed in Java

package training;

/*¥* A simple tree
*/

public class Tree {
// diameter at breast height, cm
private double dbh;

public Tree () {}

public void setDbh (double d) {
dbh = d;
}

public double getDbh () {
return dbh;

}

fichier Tree.java

// SpatializedTree
SpatializedTree t3 = new SpatializedTree ();

t3.setDbh (15.5);
t3.setXY (1, 5);

double d
double x

t3.getDbh ();
t3.getX ();

// 15.5
// 1

fichier Training.java

superclass

package training;

/** A tree with coordinates
&5

public class SpatializedTree extends Tree {

// X, y of the base of the trunk (m)
private double x;
private double y;

/** Default constructor
3y
public SpatializedTree () {
super ();
setXYy (0, 0);
}

public void setXY (double x, double y) {
this.x X;
this.y = y;

}

public double getX () {return x;}
public double getY () {return y;}

—

]

subclass

inheritance keyword

calls constructor of
& thesuperclass

&—— pnew methods

fichier SpatializedTree.java

inherited methods

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Object oriented programming

Specific references

A keyword for the reference to the current class: this

- to remove ambiguities

A keyword for the reference to the superclass: super

package training;

/** A tree with coordinates
WY

public class SpatializedTree extends Tree {
// X, y of the base of the trunk (m)

call to the private double x; e—

constructor of the private double y;
superclass
/** Default constructor
WY
public SpatializedTree () {
super ();
setXY (0, 0);
}

public void setXY (double x, double y) {
this.x
this.y
}

X;
y;

public double getX () {return x;}
public double getY () {return y;}

instance variable: this.x

a parameter

no ambiguity here

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Object oriented programming

Constructors chaining

Chain the constructors to avoid duplication of code

public Tree () {} superclass
b 4
7
J/ fichier Tree.java
/
/
l
\ /** Constructor with a location subclass
Y ny
\\\ public SpatializedTree (double x, double y) {
- super (); -
setXY (x, y); ~
} >
\\\
/** Default constructor \
*/ .
public SpatializedTree () { ////
this (0, 0); .. . =
}

fichier SpatializedTree.java

new Tree ();
// calls Tree ()

new SpatializedTree (1, 5);
// calls SpatializedTree (x, y)
// calls Tree ()

new SpatializedTree ();

// calls SpatializedTree ()

// calls SpatializedTree (x, y)
// calls Tree ()

fichier Training.java

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Object oriented programming

Method overloading / overriding

Overload (“surcharge”)

- in the same class

- several methods with same name

and

- different types of parameters and/or
a different number of parameters

Override (“redéfinition”)
- in a class and a subclass
- several methods with:

same signature i.e. same name and

same types of parameters in the
same order

and
same type of return value (or a
derivated type since JDK 5.0)

BiomassCalculator

public double calculateBiomass (Tree t) {
return t.getTrunkBiomass ();

}

public double calculateBiomass (TreeWithCrown t) {
return t.getTrunkBiomass () + t.getCrownBiomass ();

}

superclass
public double getVolume () { -
return trunkVolume;
}
_ subclass
@Override

public double getVolume () {
return trunkVolume + crownVolume;

}

e.g. if TreeWithCrown extends Tree

optional:

tell the compiler
=> it will check

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Object oriented programming

Static method and variable N

A method at the class level: no access to the instance variables
- no need to instanciate a class, example: the methods of the ‘Math’ class
like ‘Math.sqrt(double a)’
- a utility method: to reuse a block of code
- uses only its parameters (and not the instance variables)

. example: in class Tree
* Quadratic diameter
W
public static double calculate dg (double basalArea, int numberOfTrees) {
return Math.sqrt (basalArea / numberOfTrees * 40000d / Math.PI);

}

- ‘basalArea’ and ‘numberOfTrees’ are the parameters
- their names have a local scope: they are only available in the method
double dg = Tree.calculate dg (23.7, 1250);
ClassName.method (parameters)
A common variable shared by all the instances of a class
- can be a constant: ‘Math.PI’
public static final double PI = 3.14...;
- can be a variable

public static int counter;

e.g. ‘counter’ can be incremented each time the class is instancied

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Object oriented programming

UML notation Spatialized
Interface p

/
/

i ' SpatializedT
A particular kind of class patializedTree

- a list of methods without a body

- a way to make sure a class implements a set of methods
- a kind of contract

- classes extend other classes

- classes implement interfaces

- implementing several interfaces is possible

public interface Spatialized {

public void setXYZ (double x, double y, double z);

public double getX (); o-—_‘_‘_‘___‘_‘_‘_‘_‘_‘\:::::::::: _
public double getY (); ¢ — ————————— no method body in the
()

public double getZ e " Interface

’
’
.
’

/** A tree with coordinates
*/
public class SpatializedTree extends Tree implements Spatialized {

public void setXYZ (double x, double y, double z) {
this.x = x; .\\\\\\\\\\\\\\\\ - — _
this.y ; an implementation is required

y;
this.z = z; for the methods in the class or

} / the subclasses
public double getX () {return x;
public double getY () {return y;

public double getZ () {return

N < X

e

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Object oriented programming e :
UML notation ‘L Shape |
Abstract class /\
Square Circle

An incomplete superclass with common methods

- class 'template’ containing abstract methods to be implemented in all subclasses
(contains at least one abstract method)

- can also have regular methods (unlike an interface)

- each subclass implements the abstract methods

- can not be instanciated dlreCtIy an abstract class (at least one abstract method):

/ can not be instanciated
fichier public abstract class Shape {

. private String name;
Shape.java

public String getName () {return name;}e———— @ regular method

public abstract double area ();.\ll\TE\\\\\\\\\\\\\
} an abstract method: no body
public class Square extends Shape {
private double width; // m """\‘\\\\‘““*‘\~\\\\\\\‘R\\\
two subclasses:

é(')\'/erride they implement the abstract method
public double area () {
return width * width;

} // Example
} Shape sh = new Shape (); // ** Compilation error
fichier Square.java Square s = new Square (”square 1”, 10);
public class Circle extends Shape { Circle c = new Circle ("circle 17, 3);

private double radius; // m ,
String namel = s.getName (); // square 1

@Override

m public double area () { double al = s.area (); // 100
Circle.java return Math.PI * radius * radius; double a2 = c.area (); // 28.27
= }
} fichier Training.java

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Object oriented programming

Polymorphism a*m%P

Write generic code to be executed with several types

- more abstract and general implementations

public abstract class Shape { private float totalArea (Shape[] a) {
double sum = 0;
public abstract double area (); // m2 AfffiFfﬁfui7fgpi_i7f4?;}fﬁ9f?iﬁiff{f£ 77777777
} | // the program knows what method to call
o . } sum += al[i].area ();
fichier Shape.java RO
return sum;
public class Square extends Shape { ¥ this code is generic
rivate double width; // m :
o fichier Training.java works with all shapes

@Override

public double area () {
return width * width;

}

several classes, all Shapes

fichier Square.java
public class Circle extends Shape { 2CUlIIEICEE / / \
private double radius; // m

Shape[] a = {new Square (5), new Circle , hew Square (10)};

@Override
public double area () {

return Math.PI * radius * radius;
}

) fichier Training.java

float total = totalArea (a);

fichier Circle.java

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Object oriented programming

The 'Object’ superclass

If no 'extends' keyword...
...then the class extends Object
-> All classes extend Object

46

UML notation Object ‘&

f AMAP

Tree

note: native methods have a body

. . extends Object
fichier Tree.java :

package training;

fichier Object.java

package java.lang;

/** A simple tree
*/

public class Tree {
// diameter at breast height, cm
private double dbh;

public class Object/{

public final native Class<?> getClass();

public Tree () {} public native int hashCode();
public void setDbh (double d) {

dbh = d; public boolean equals(0Object obj) {

return (this == obj);
} }
public double getDbh () { protected native Object clone() throws
) return dbh; CloneNotSupportedException;

public String toString() {
return getClass().getName() + "@" +
Integer.toHexString(hashCode());

public String toString () {
return “Tree dbh: “ + dbh;

} }

fichier Training.java

in native language (e.g. C)
-> they are not abstract

a superclass for
all classes

all these methods can be
called on all objects

toString () can be overriden P> ERECCERJIEENENG]

// Tree -
Tree t = new Tree (); training.Tree@37dd7056
t.setDbh (14.5); -

System.out.println (“” f t);

appended to a String: for a better result

i.e. t.toString () An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Object oriented programming

Enum a*m% p

Another particular kind of class: a type for enumerations

- an enum is a type with a limited number of value

Declaration

public enum Day {
SUNDAY, MONDAY, TUESDAY, WEDNESDAY,
THURSDAY, FRIDAY, SATURDAY

An example of use

private Day day;

day = Day.SUNDAY;

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Object oriented programming

Cast Rﬁggé P

Cast of numbers

double d = 12.3;
int i = (int) d; // 12
Tree
In an inheritance graph f
SpatializedTree

- a reference can have any supertype of the real type

Tree t = new SpatializedTree ();

t —p|Spatialized
- —* .\ Tree

real type of the object

type of the reference

- we can only use the methods the reference knows

t.setDbh (10); // ok
t.setXY (2, 10); // ** compilation error: Tree does not define setXY ()

- to access the methods of the real type, we can create another reference

SpatializedTree s = (SpatializedTree) t; // cast: creates another reference
s.setXY (2, 1); // ok: SpatializedTree does define setXY ()

t =P Spatialized
s —p Tree

instanceof operator: checks List trees = forest.getTrees(); \

the type of an object or (Object o : trees) { :
if (o®instanceof SpatializedTree) { same object

q SpatializedTree s = (SpatializedTree) o;
calculates the r_eqtangle enclosing | L o UpdateRectangle(s.getX(), s.gety()):
the spatialized trees }

}

- example of use (with the ‘instanceof’ operator)

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Object oriented programming

Packages and import a‘ﬁ% p

Packages
- namespaces to organize the developments: groups of related classes
- first statement in the class (all lowercase)
- match directories with the same names
e.g.
- java.lang: String, Math and other basic Java classes
- java.util: List, Set... (see below)
- training: Tree and SpatializedTree
The package is part of the class name: java.lang.String, training.Tree

Import
- to simplify notation, import classes and packages
instead of:

training.Tree t = new training.Tree ();

write:

import training.Tree;

Tree t = new Tree ();

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

50
Java training > Object oriented programming

Lifetime of variables a’ﬁ‘ b

Lifetime of a variable: defined by the scope delimited by {...} in which the variable has been defined

- instance variable of a class: as long as the object it belongs is referenced
(lifetime = lifetime of the object)

package training;

/** A simple tree
*/
public class Tree

// diameter at b&agst height, cm
private double @

public Tree () {}

dbh does not exist

// Before instanciation of ./////////

// Tree class an object of type Tree is created

and its reference is placed in t1:

Create a t : AR
«_eerﬁ it ():e———dbh (oftl) exists and is initialized
to 0.0 (default value)

public void setDbh (double d) {
dbh = d;

// Set its diameter
tl.setDbh (12.5); e dbh has value 12.5

}
. // tl is no more referenced
pu?:tﬁrﬂoggk? getbbh () 4 tl=null; &—— the created Tree is no more
} ! referenced: it becomes candidate

fichier Training java to the garbage collector and dbh
N does not exist anymore

—

fichier Tree.java

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Object oriented programming

Lifetime of variables

51

AMAP

Lifetime of a variable: defined by the scope delimited by {...} in which the variable has been defined

- argument (parameter) and local variable of a method: exists only inside the method

package training;

/** A simple/tree
*/

public clasy Tree {
// diamefer at breast heioght, cm
private/double dbh;

public Tree () {}

pyblic void setDbh (double{d)) {
dbh = d;

}

public double getDbh () {
return dbh;
}

public double getDbhSquared () {
double res = dbh*dbh;
return res;

}

fichier Tree.java

d is an argument of the setDbh() method: d exists only inside this method

// Create a tree

IrER T = 089 TRee ()5 d does not exist

// Set its diameter

tl.setDbh (12.5);
' d exists inside the

// Call ge ared() method

double dbhSquared = tI- hSquared (); method
. ..] d does not exist
fichier Training.java anymore

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

52
Java training > Object oriented programming

Lifetime of variables a’ﬁ‘ b

Lifetime of a variable: defined by the scope delimited by {...} in which the variable has been defined

- argument (parameter) and local variable of a method: exists only inside the method

package training;

/** A simple tree
*/

public class Tree {
// diameter at breast height, cm
private double dbh;

res is declared in the getDbhSquared() method: res exists only inside this
method

public Tree () {}

// Create a tree

public void setDbh (double d) { Tree t1l = new Tree ();

dbh = d;
} > // Set its diameter
tl.setDbh (12.5); res does not exist
public double getDbh () ."""""""""""”"“““‘4“4“4411111
return dbh; // Call getDbhSquared() method f -
} double dbhSquared = t1.getDbhSquared (); res exists inside the

method

public douhle getDbhSquared ()| { .""""‘T\hRTRR"‘%T‘i‘\\\T““““““‘—\\RRRRR :
doubl = dbh*dbh; fichier Training.java res does not exist

return res; anymore

fichier Tree.java

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

53
Java training > Object oriented programming

Lifetime of variables aﬁ b

Lifetime of a variable: defined by the scope delimited by {...} in which the variable has been defined

- index of a loop: exists inside the loop (at least...)

i does not exist

// With an array
int[] array = new int[12]; i is created
int sum =0 ;

’

f°;r£§§[i] _ ?f 1 < array.length; 1++)]1 lifetime of i = exists only
sum += array[il; inside the loop
} i exists inside the loop

i does not exist anymore

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

54
Java training > Object oriented programming

Lifetime of variables a’ﬁzx b

Lifetime of a variable: defined by the scope delimited by {...} in which the variable has been defined

- index of a loop: exists inside the loop (at least...)

i does not exist

// With an array
int[] array = new int[12]; i is created
int sum =0 ;

’

f°;r§j§fi] _ 9i L < array.lengthi 1+ lifetime of i = exists only
sum += array[il; inside the loop
} i exists inside the loop

i does not exist anymore

sum has the same value with i declared before the loop:

// With an array
int[] array = new int[12];

T) e) I is created

int i; . . .

for (i = 0; i < array.length; i++)[{ lifetime (?fl = from its
array[i] = i; i exists inside the loop declaration + inside the

sum += array[i];

loop + after the loop

i still exists and its value is 12

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

55
Java training > Object oriented programming

Lifetime of variables a’ﬁzx b

Lifetime of a variable: defined by the scope delimited by {...} in which the variable has been defined

- local variable of a loop: exists only inside the loop

// With an array

int[] array = new int[12]; j does not exist
int sum = 0 ;
for (int i = 0; i < array.length; i++)|{

int())= 1+2; j is created

array[i] = 1i;
sum += array[il;

} j does not exist anymore

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Object oriented programming

Names of variables

Use explicit names for:

- instance variables
package training;

/** A simple tree
*/

public class Tree {
// diameter at pree
private doub)
private in
private do
private Str

ble height;
ng speciesName;

public Tree () {}

56

¥

AMAP

- local variables having a long range
package training;

/** A simple tree
*/

public class Tree {
// diameter at breast height, cm
private double dbh;

public Tree () {}

public i tions () {
in€ anExplicitName;

some long calculations..
anExplicitName = ...

anExplicitName = ...

}

Short names are authorized for variables having a short range:

// With an array

int[] array = new int[12];

int sum =0 ;

for (int(;)= 0; i < array.length; i++) {
array[1i] = 1i;
sum += array[i];

}

only 3 lines

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Object oriented programming

Java reserved keywords

abstract
boolean
break
byte
case
cast
catch
char
class
const
continue
default
do
double
else
enum
extends
false
final
finally

float

for

goto (unused)
if
implements
import
instanceof
int
interface
long
native

new

null
package
private
protected
public
return
short
static

super
switch
synchronized
this

throw

throws
transient
true

try

void
volatile
while

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Object oriented programming

Java modifiers

a final field cannot be changed e.g. Math.PI

a final class can not be subclassed a final method can not be overriden

class 1interface field / method/ initializer variable

abstract X X X

final X X X X
native X

none (package) X X X X

private X X

protected X X

public X X X X

static X X X X
synchronized X

transient X

volatile X

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Resources

Resources

- a focus on the collection framework
- the Collection interface

- ArrayList

- HashSet

- Map

- the tools in the Collections class

- how to iterate on objects in collections
- how to iterate on objects in maps

- generics

- online documentation

- online documentation: javadoc

- online documentation: tutorials

- links to go further

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Resources

A focus on the collection framework a‘ﬁ% b

A collection is like an array, but without a size limitation (size can vary during execution)

- contains references

- may have distinctive features
- a list keeps insertion order

- a set contains no duplicates and has no order
- the 8 simple types (int, double, boolean...) are not objects => need a wrapper object
Byte, Short, Integer, Long, Float, Double, Character, Boolean

Java helps: Integer i = 12; (autoboxing / unboxing)

- all collections implement the Collection interface

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Resources

The Collection interface

Implemented by all collections

public
public

public
public

public
public

boolean add (Object o0);
boolean remove (Object o0);

void clear ();
boolean isEmpty ();

int size ();
boolean contains (Object o0);

//
//

//
//

//
//

61

AMAP

adds o
removes o

removes all objects
true if the collection is empty

number of objects in the collection
true if o is in the collection

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

62

Java training > Resources

ArrayList nﬁ' p

ArrayList ArrayList
- implements the List interface
- keeps insertion order
- accepts duplicates
- specific methods added

public void add (int index, Object o); // adds o at the given index (shifts subsequent elts)
public Object get (int index); // returns the object at the given index

public int indexOf (Object o); // returns the index of o

public Object remove (int index); // removes the object at the given index

List L = new ArrayList ();

l.add ("Robert"); // add () comes from Collection
l.add ("Brad");

1l.add ("Robert");

int n = l.size (); // 3
String s = (String) l.get (0); // "Robert"

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Resources

HashSet
r— 1
| Collection j
[*X **** 7
| Set j
,,,,,,,, ‘Ei
HashSet HashSet

- implements the Set interface
- does not keep insertion order
- does not accept duplicates

2
(¢}
~+
wn
]

new HashSet ();

s.add ("one");
s.add ("two");
s.add ("one"); // duplicate, ignored

int n = s.size (); // 2
if (s.contains ("one"))... // true
if (s.contains ("three"))... // false

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Resources

Maps

A Map associates a key with a value
- the common Map implementation is HashMap

- keys must be unique (like in a Set)
- keys and values are references

Map m = new HashMap ();

m.put ("Red", new Color (1, 0, 0));

m.put ("Green", new Color (0, 1, 0));

m.put ("Blue", new Color (0, 0, 1));

Color ¢ = (Color) m.get ("Red"); // returns a color object

if (m.containsKey ("Blue"))... // true

Set s = m.keySet (); // set of keys: Red, Green, Blue

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Resources

The tools in the Collections class

Tools for the collections are proposed in a class: Collections

public};féiiETfinal List EMPTY_LISEH////////////,/////- empty collections and maps
public;static}final Set EMPTY SET
public}static‘final Map EMPTY_ MAP

. |
publlc;statlc} void sort(List list) o sorting

public}static‘void sort(List list, Comparator c)

public staticlvoid shuffle(List list), | changingelements order

public}static‘void reverse(List list)

public}staticiObject min(Collection coll)
publictstatic}Object max(Collection coll)

// Random order
Collections.shuffle (list);

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Resources

How to iterate on objects in collections

Two syntaxes to loop on a list

// List of Tree

List 1 = new Arraylist (Li///////////,,//’>consnucuxtakeseadbh
l.add (new Tree (5.5));
l.add (new Tree (2.3));

l.add (new Tree (4.1)); an lterator + a cast

// Loop with an Iterator
for (Iterator i = l.iterator (); i.hasNext ();) {
Tree t = (Tree) i.next ();

if (t.getDbh () < 3) {i.remove ();}

.\ the iterator can remove the
} current element from the list

a cast is needed at iteration time // Loop with a foreach
\\\\\\\\\\\\\\\\\\\\\\\\Ior (Object o : 1) {
Tree t = (Tree) o;

t.setDbh (t.getDbh () * 1.1);
}

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

67
Java training > Resources

How to iterate on objects in maps o

Map m = new HashMap ();
m.put ("Red", new Color (1, 0, 0Q));
m.put ("Green", new Color (0, 1, 0));

m.put ("Blue", new Color (0, O, 1))/ iterate on keys
for (Object o : m.keySet ()) { |

/e

} ‘//////////////////// iterate on values
‘for (Object o : m.values ()) {

.z . o= ..

/e

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Resources

Generics

Collections are manipulated by generic classes that
implement Collection<E>

E represents the type of the elements of the collection

// List of Tree

List<Tree> 1 = new ArraylList<Tree> ();
l.add (new Tree (1.1));

l.add (new Tree (2.5));

l.add (new Tree (3.4));

// Simplified foreach, no cast needed
for (Tree t : 1) {

t.setDbh (t.getDbh () * 1.1);

// Print the result
for (Tree t : 1) {

'
\ List<E>

_4 }7, ,,,,, 5

ArrayList<E>

'//////////Ionger:specﬁytype

.////////// shorter: no cast

System.out.println ("Tree dbh: " + t.getDbh ());

}

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

Java training > Resources

Online documentation http://download.oracle.com/javase/8/docs/ nﬁ‘ P

ORACLE' Java SE Documentation

Oracle Technology Network Software Downloads Documentation Search

Java SE 6 Documentation b (= 2R A

h O The two principal products in the Java SE platform are: Java Development Kit (JDK) and Java SE Runtime Environment (JRE).
What's New :

The JDK is a superset of the JRE, and contains everything that is in the JRE, plus tools such as the compilers and debuggers necessary for developing applets and applications. The Java

Documentation Runtime Environment (JRE) provides the libraries, the Java Virtual Machine, and other components to run applets and applications written in the Java programming language.

+ Release Notes The following conceptual diagram illustrates all the component technologies in Java SE platform and how they fit together.

Java Language

Tools & ------_-_-
e e I soorty M DL Dok Monkrng Tolstot Sy
Java IO

CORBA

L e I—_
JDBC

o — e, I S WS —

XML

Tools and Utilities JDK Integration
Libraries Ja\(a
. Other Bas
Tutorials and E LJt;rane: API
e -_--_-

oFL g
JDK Components f

lang Collections Concurrency Logging Management
+ The Java Tutorials Base Libraries | p ﬁ“ ul — Utlities JAR
+ Online Training API Objects Reflection E%ﬁ Versioning Zip Instrumentation
+ Developer Resources)
» Courses and Certification Java Virtual Java Hotspot Client and Server VM

More Information Q/

|
« Installation Instructions Java SE 6 APl Documentation
+ Supported Systems

Configurations What's New in Java SE Documentation
+ Java Language Java SE documentation is regularly updated to provide developers with in-depth information about new features in the Java platform. Some recent updates include:
Specification
+ Java VM Specification
« Java SE White Papers
. Em“tl"ﬁsgﬂf‘“”ﬁ JavaSE customizing the RIA Loading Experience Mixing Signed and Unsigned Code
+ -egaiolces Customize the rich Internet application loading experience by providing a splash screenora Signed Java Web Start applications and applets that contain signed and unsigned
customized loading progress indicator to engage the end user when the RIA is loading and components could potentially be unsafe unless the mixed code was intended by the
to communicate measurable progress information. application vendor. As of the 6 update 19 release, when mixed code is detected in a
Resources . See the following topics for more information: program, a warning dialog is raised. Mixing Signed and Unsigned Code explains this

warning dialog and options that the user, system administrator, developer, and deployer
have to manage it.

+ Java for Business

Open JDK + Customizing the RIA Loading Experience topic for conceptual information See Oracle Java SE and Java for Business Critical Patch Update Advisory - March 2010
018l + Customizing the Loading Experience topic in the Java Tutorials for step-by-step for details.

+ Bugs Database instructions and examples

70
Java training > Resources

Online documentation: javad oC http://download.oracle.com/javase/8/docs/api/ ﬁﬁ‘ P

Eva.awt.event
fava.awt font Overview Package [HEEE]Use Tree Deprecated Index Help Java™ Platform
lava.awl.geom PREV CLASS MEXT CLASS FRAMES MO FRAMES Standard Ed. 6
lEva. awt.im SUMBARY: NESTED | FELD | CONSTR | METHOD DETAIL: FELD | COMSTR | METHOD
java.awt.im.spi
java.awt.image
v, vt imaqe renderable javalang
java. awt.print .
iava.beans Class Dh_]ECt
lava. beans.beancontext
lEva.io java, Lang. Obj ect
jva.lang
java.lang. annotation]
iava.lang.instrument public class Object
java.lang. management]]
iava. lanag.ref Class Object is the root of the class hierarchy. Every class has Object as a superclass. All objects, including arrays, implement the methods of this class.
java.lang.reflect
jva.math Since:
lava net JDE LD
See Alsor
Olass

java.lang
Interfaces

Appendahble
Charsequence Constructor Summary

Objecti)

Thread. UncaughtExceptionHandler Method SII]II]IIEII‘}'

protected|clonei)

—Eﬂc:ea” Object Creates and returns a copy of this ohject.

Character boolean | sguals(ibject ohj)
Thamcier DnicadeBlock Indicates whether some other object is "equal to” this one.

Clazs protected | finalizal)

Eﬂla—ﬁljgader veid Called by the garbage collector on an object when garbage collection determines that there are no more references to the object.
MpEET
Double Class<?»| getClassi)

Enum Returns the runtime class of this Object.

nheritable Threadl ocal int| hashCode()
Integer Returns a hash code value for the object.
Lang

Math vold|potifyi)
Mumber ‘Wakes up a single thread that is waiting on this object’s monitor,

Pacra void|noti fyalli)
Frocess ‘Wakes up all threads that are waiting on this objects monitor,

ProcessBuilder String | toStringl)

gﬂ 2: EPEI‘I'H'ESFDH Returns a string representation of the object.

SecuntyManager vord |waitl)
short Causes the current thread to wait until another thread imvokes the notify () method or the notifyA11 () method bor this object.

Stricthath void|wait(long timeout)

String Causes the current thread to wait until either another thread imvokes the notify () method or the notify811 01 method for this object, or a specified amount of
atrngBuffer 1 | time has elapsed.

Java training > Resources

Online documentation: tutorials http://docs.oracle.com/javasel/tutoriall

Trails Covering the Basics
These trails are available in book form as The Java Tutorial, Fifth Edition. To buy this book, refer to the box to the right.

» Getting Started — An introduction to Java technology and lessons on installing Java development software and using it to create a
simple program.

» Learning the Java Language — Lessons describing the essential concepts and features of the Java Programming Language.

» Essential Java Classes — Lessons on exceptions, basic input/output, concurrency, regular expressions, and the platform
environment.

» Collections — Lessons on using and extending the Java Collections Framework.

» Date-Time APIs — How to use the java.time pages to write date and time code.

» Deployment — How to package applications and applets using JAR files, and deploy them using Java Web Start and Java Plug-
in.

» Preparation for Java Programming Language Certification — List of available training and tutorial resources.

Creating Graphical User Interfaces

» Creating a GUI with Swing — A comprehensive introduction to GUI creation on the Java platform.
» Creating a JavaFX GUI — A collection of JavaFX tutorials.

Specialized Trails and Lessons
These trails and lessons are only available as web pages.

» Custom Networking — An introduction to the Java platform's powerful networking features.

» The Extension Mechanism — How to make custom APIs available to all applications running on the Java platform.

» Full-Screen Exclusive Mode API — How to write applications that more fully utilize the user's graphics hardware.

» Generics — An enhancement to the type system that supports operations on objects of various types while providing compile-time
type safety. Note that this lesson is for advanced users. The Java Language trail contains a Generics lesson that is suitable for
beginners.

» Internationalization — An introduction to designing software so that it can be easily adapted (localized) to various languages and
regions.

» JavaBeans — The Java platform's component technology.

» JDBC Database Access — Introduces an API for connectivity between the Java applications and a wide range of databases and
data sources.

» JMX— Java Management Extensions provides a standard way of managing resources such as applications, devices, and services.

» JNDI— Java Naming and Directory Interface enables accessing the Naming and Directory Service such as DNS and LDAP.

» JAXP — Introduces the Java API for XML Processing (JAXP) technology.

» JAXB — Introduces the Java architecture for XML Binding (JAXB) technology.

» RMI — The Remote Method Invocation API allows an object to invoke methods of an object running on another Java Virtual
Machine.

» Reflection — An API that represents ("reflects") the classes, interfaces, and objects in the current Java Virtual Machine.

» Security — Java platform features that help protect applications from malicious software.

» Sound — An API for playing sound data from applications.

» 2D Graphics — How to display and print 2D graphics in applications.

» Sockets Direct Protocol — How to enable the Sockets Direct Protocol to take advantage of InfiniBand.

Java training > Resources

Links to go further

Oracle and Sun’s tutorials
http://docs.oracle.com/javase/tutorial/
see the 'Getting Started' section

Learning the Java language
http://docs.oracle.com/javase/tutorial/java/index.html

Coding conventions
http://www.oracle.com/technetwork/java/codeconvtoc-136057.html

Resources on the Capsis web site
http://capsis.cirad.fr

Millions of books... including this reference

“Java In A Nutshell”, David Flanagan - O'Reilly (several editions)
“Programmer en Java”, Claude Delannoy - Eyrolles

An introduction to Java - F. de Coligny, N. Beudez - INRA AMAP - February 2018

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67
	Diapo 68
	Diapo 69
	Diapo 70
	Diapo 71
	Diapo 72

