Une méthode pour étudier la réponse des services écosystémiques à la gestion :

Illustration avec les forêts hétérogènes de montagne

Valentine Lafond ^{1,2} – Thomas Cordonnier ¹ – Benoît Courbaud ¹

¹ IRSTEA GRENOBLE, ² ETH ZURICH

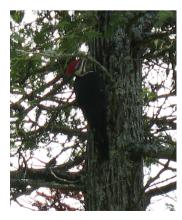
CAQSIS 2015, Nancy

Pour mieux affirmer ses missions, le Cemagref devient Irstea

Les SE en forêts

Les forêts rendent de nombreux services

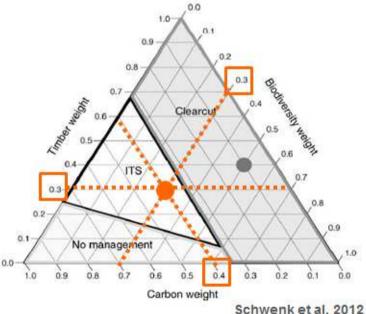
(cf. « fonctions forestières »)

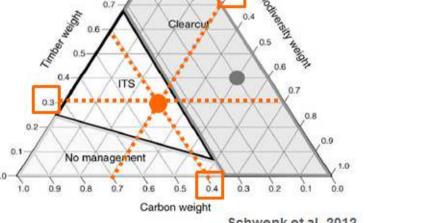

- Production (bois, baies, champignons... oxygène, eau!)
- Stockage de carbone (changements climatiques)
- Protection (érosion, chute de blocs, avalanches...)
- Recréation, culturel, esthétique (paysage)...
- Réservoir de biodiversité

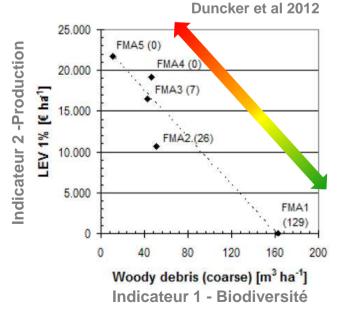
De nombreuses questions...

- Des compromis/synergies entre SE?
 - Ex. compromis production / biodiversité
 - Très étudié (Ex. Duncker et al. 2012, Schwenk et al. 2012;, Seidl et al. 2007)
 - Reconnu, cf. politiques publiques (Assises de la Forêt 2006, Grenelle de l'Environnement 2007)
 - ⇒ « Produire plus tout en préservant mieux la biodiversité »
 - Existe-il d'autres compromis (ou des synergies) entre SE?
- Comment étudier les compromis?
 - Comment les détecter, les analyser, les caractériser ?
 - Comment étudier les « scénarii performants »?

Étude des compromis entre SE en forêt


- Exemples d'études (par simulation)
 - Comparaison de scénarii: Non géré VS Géré (≠ modes de gestion)
 - **SE concernés:** production, carbone, biodiversité (≠indicateurs)...
 - **Méthodes d'analyse:** corrélations, coûts (\$?), pondérations...


Etudes	Gestion														Analyse	
	-	F R	C P	F I	C D	C F	В	Product	Protect	С	Biodiv.	O ₂	Eau	F. sol	compromis	
Baskent et al. 2008 & 2009	X	X	X	X				X X		X X		Х	X		- Somme \$ / SE	
Buongiorno et al. 2012				X				X		X					Optim.	
Duncker et al. 2012	X	X		X			X	X biomasse		X	X (BM, GB, compo, habitats)		X	X	ACP	
Seidl et al. 2007	X	X			X	X		X		X	(BM, Compo. naturalité)				Coûts \$ (prod et C)	
Schwenk et al. 2012	X	X	X	X				X		X	X (oiseaux)				Somme Pondérée « Utilité »	
Temperli et al. 2012		X		X				X			X (BM, GB, Compo., maturité)				-	


Étude des compromis entre SE en forêt

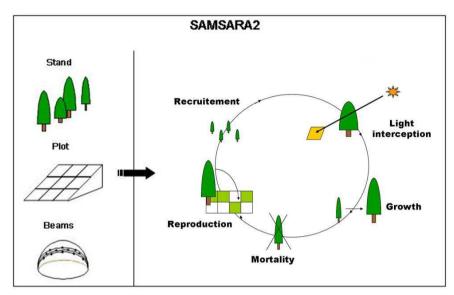
Limites

- Choix a priori
 - Sélection de scenarii contrastés
 - Hiérarchie entre SE (pondération ou \$)
- **Compréhension des compromis** => facteurs sous jacents ?

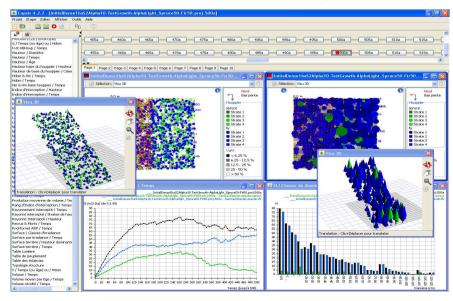
- Détecter et analyser les compromis/synergies
 - Sans choix a priori
 - Explorer toutes les possibilités (pas de scenario pré-défini)
 - Pas de préférence a priori pour un SE (pas de pondérations)
- Comprendre ce qu'il y a « derrière » ces patterns
 - Quels sont les facteurs responsables ?
- ... => Mieux comprendre l'impact de la gestion
 - Impact des facteurs: Facteurs influents ? Signe ? Forme ?
 - Interactions / compensations entre facteurs?

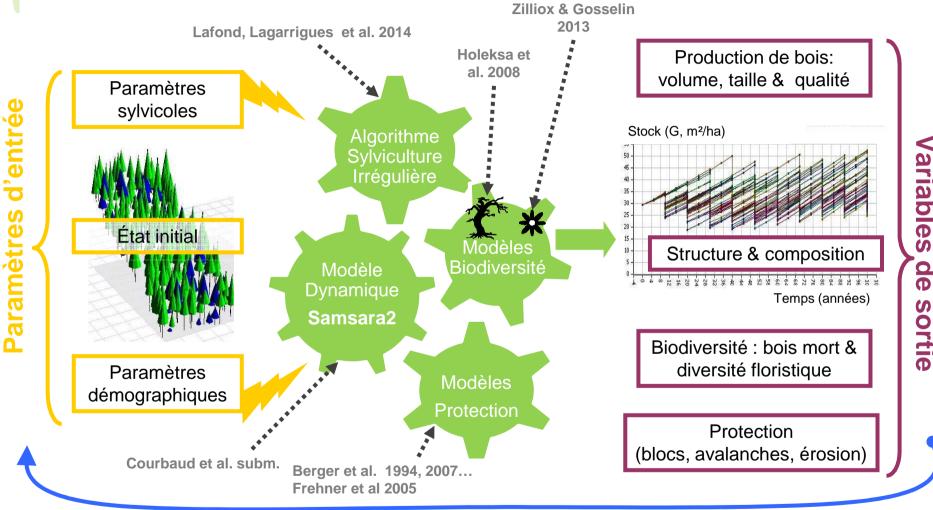
- Modèle : Samsara2
 - Individu-centré
 - Spatialement explicite
 - Compétition pour la lumière

Courbaud et al. (2003) Agri For Meteo 116:1-18


Sapin-épicéa (hêtre)

■ Platforme : Capsis4(de Coligny 2005, 2007)

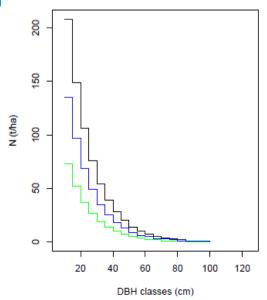


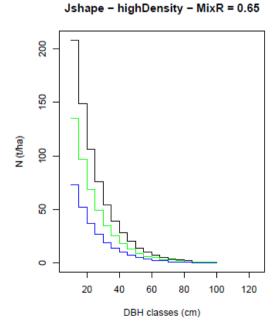

> Dufour-Kowalski et al. (2012) Ann.For.Sci 69:221-233

> Courbaud et al. (2001) For Ecol Manage 145:15-28

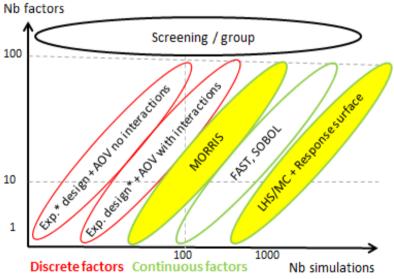
Analyse de sensibilité : effets des variations des paramètres d'entrée sur les variables de réponse?

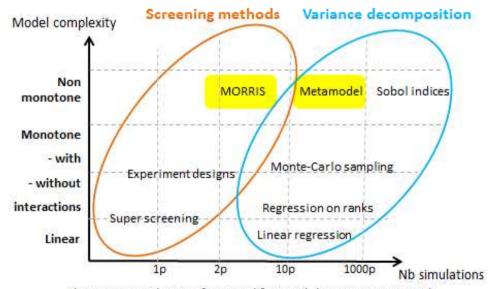
- Facteurs testés et plan d'expérience
 - 42 paramètres de Samsara2 (gamme incertitude: moyenne +/- 1.96 SE)
 - 15 paramètres de l'algorithme de sylviculture


	Code	Paramètre Paramètre	min	max	nb niveaux	Échelle
Arbres cibles	dH	diamètre d'exploitabilité (cm)	42.5	67.5	6	classique
(diamètres)	dT	diamètre d'éclaircie (cm)	17.5	32.5	4	classique
	gCx	prélèvement maximum par coupe (m²)	7	12	6	classique
	gCs	prélèvement standard par coupe (m²)	4	7	4	classique
Quantités &	gCn	prélèvement minimum par coupe (m²)	1	4	4	classique
proportions prélevées	hRx	% de récolte (en surface terrière) dans les arbres de diamètre d≥ dH	0.25	1	6	classique
L	tRx	% d'éclaircie (en surface terrière) dans les arbres de diamètre dT≤d <dh< td=""><td>0</td><td>0.5</td><td>6</td><td>classique</td></dh<>	0	0.5	6	classique
Arbres sibles	sWP	puissance de pondération liée à la proportion de l'espèce	0.1	100	4	log10
Arbres cibles proba. de coupe = f(diamètre, espèce)	hdWP	puissance de pondération liée au diamètre des arbres pour la récolte	0.1	100	4	log10
(diametre, espece)	tdWP	puissance de pondération liée au diamètre des arbres pour l'éclaircie	0.1	100	4	log10
Structure spatiale	aaM	surface maximale des trouées (m²)	1	2500	6	log10
des prélèvements	dB	distance tampon entre arbres ou groupes récoltés (m)	0	15	4	classique
Préservation de la	nbT	nb d'arbres préservés pour la biodiversité (nb/ha)	0	6	4	classique
biodiversité (arbres bio, bois mort,	dwpH	% des arbres morts frais récoltés	0	1	6	classique
espèces minoritaires)	mrC	Seuil de préservation des essences minoritaires (% surface terrière min)	0	0.3	4	classique


- Facteurs testés et plan d'expérience
 - 42 paramètres de Samsara2
 - 15 paramètres de l'algorithme de sylviculture
 - 5 facteurs «état initial» à 2 niveaux
 - => 32 peuplements initiaux virtuels

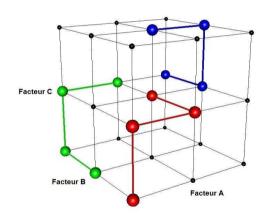
Factor_code	Factor	min	max
IS_F1	Densité (G)	20	40
IS_F2	Structure (Gini)	0.4	0.6
IS_F3	Tx Mélange	0.35	0.65
IS_F4	Ехро.	0	180
IS_F5	Pente	20	40

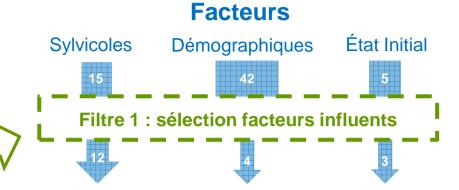

Jshape - highDensity - MixR = 0.35



- Choix technique(s) d'analyse de sensibilité (AS) ?
 - Dépend des contraintes du modèle utilisé
- Samsara2: temps de calcul +++, nb paramètres ++, stochastique ++
- => Une approche en deux temps: (1) Screening avec Morris, (2) LHS et méta-modèles

^{*} Experiment design: fractional factorial designs or optimized


^{*} Experiment design: fractional factorial designs or optimized

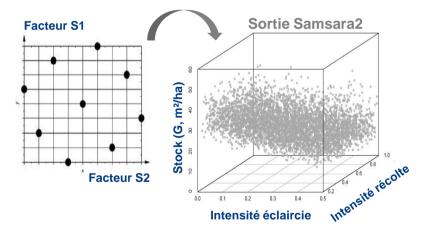

Adapted from B. looss A MEXICO

- Une approche en deux étapes
- (1) Méthode de Morris

Criblage, échantillonnage OAT

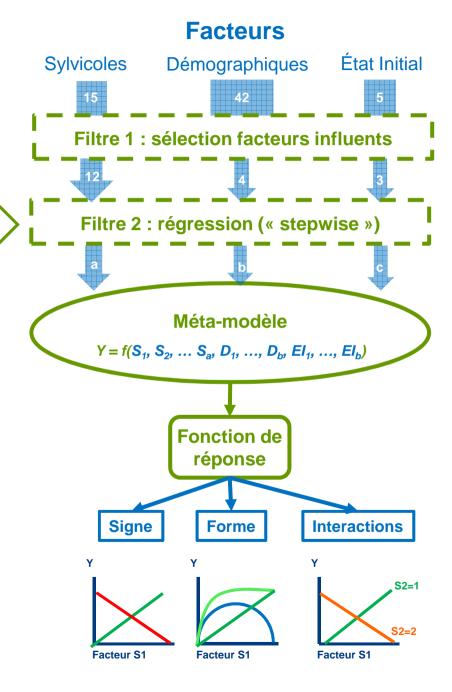
(Morris 1991; Campolongo et al. 2007; Ciric et al. 2012

Une approche en deux étapes


(2) Méta-modèle

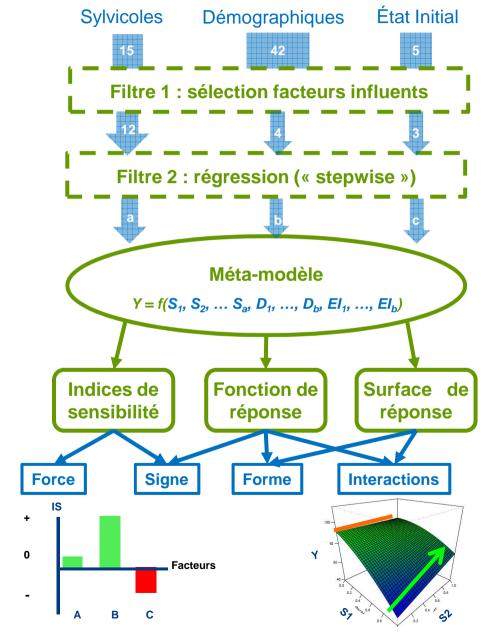
Échantillonnage + intensif (OA-LHS)

(Owen 1992; Tang 1993)


Plan:

- ✓ Distribution des modalités / facteurs
- ✓ Stratification de l'espace factoriel

Analyse de l'effet des facteurs



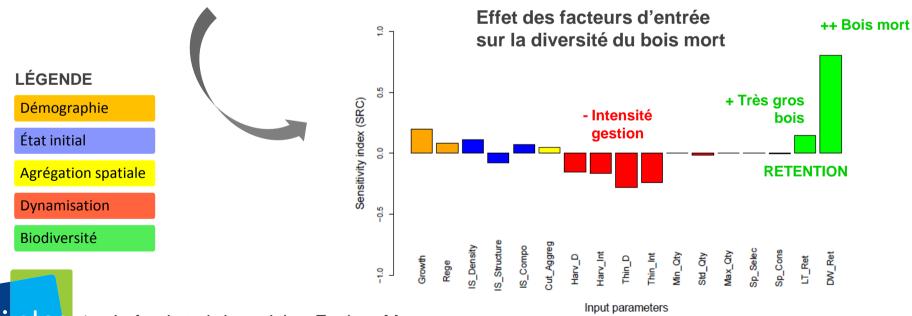
Une approche en deux étapes

(2) Méta-modèle

Échantillonnage + intensif (OA-LHS)

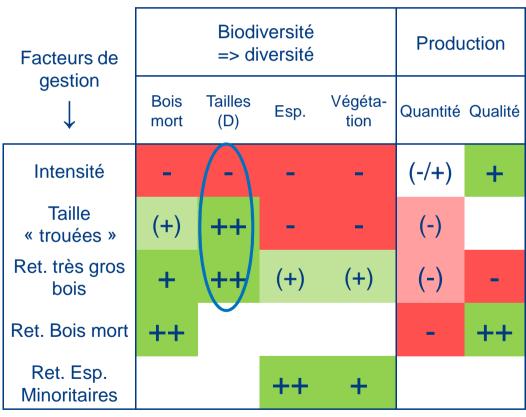
(Owen 1992; Tang 1993)

Facteurs



Analyse de l'effet des facteurs

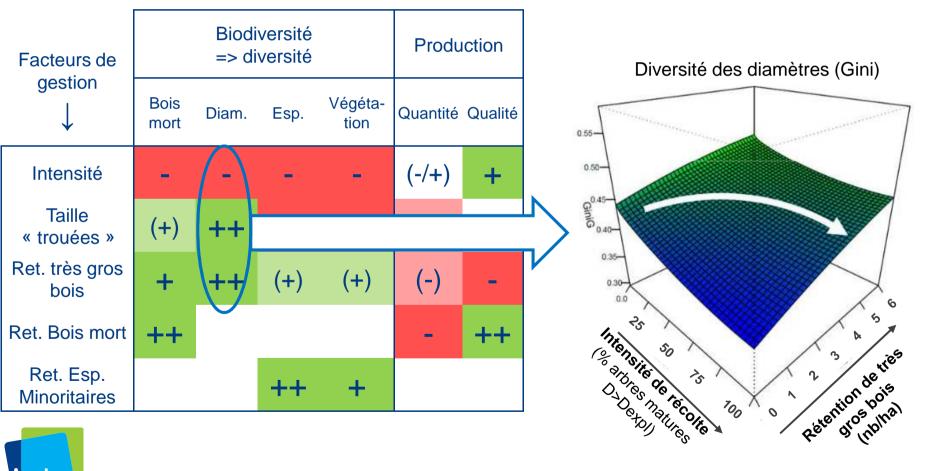
- Indices de sensibilité
 - Identification des paramètres clefs
 - SRC = Standardized Regression Coefficients


METAMODEL

Y = f (S1, S2, S3...Sn, D1, D2, IS1, IS2, IS3)

Lafond et al. in revision. Environ Manag

Synthèse


Effets des facteurs de gestion :

- Intensité de gestion
- + Mesures de rétention
- ! Facteurs avec effets opposés
- => Compensation ?

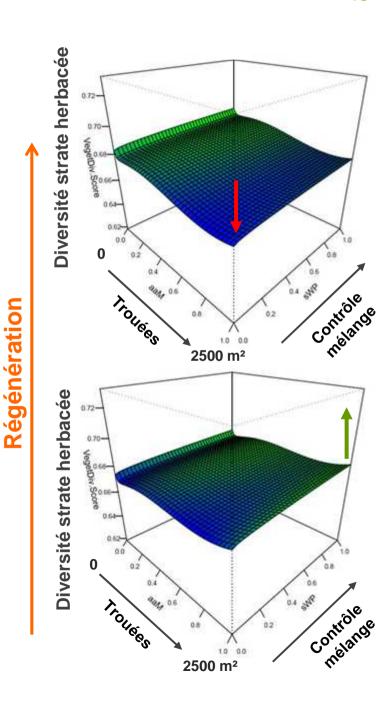
Lafond et al. subm. Environ Manag

Des compensations entre facteurs ?

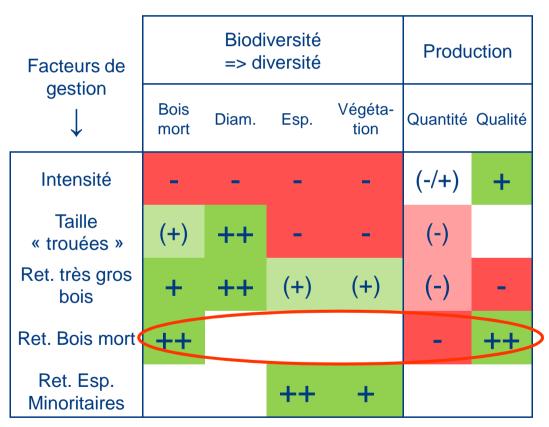
Lafond et al. in revision. Environ Manag

Réponse de la strate herbacée à la gestion Effet négatif de la taille des trouées Compensation / contrôle du mélange ? Modulation / démographie

Analyse fine de la réponse des indicateurs


Analyse de sensibilité

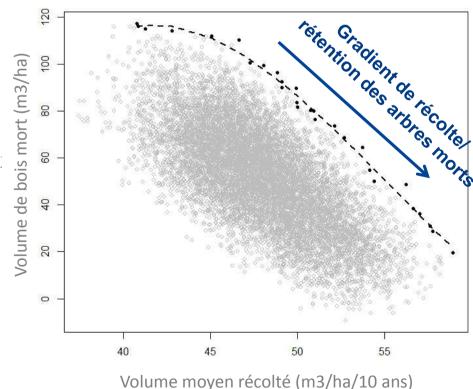
Effet moins négatif


Compensation plus efficace

⇒ Réponse sensible à la régénération !

irstea

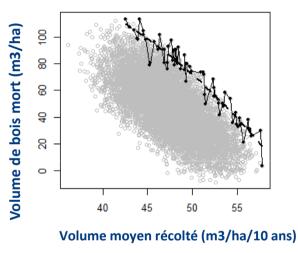
Des compromis entre indicateurs de SE ?

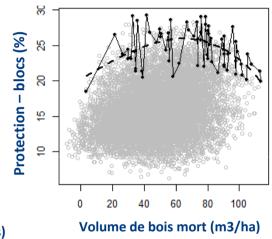

- Indicateurs avec réponse opposée
 (à la variation d'un facteur)
- => Compromis ?

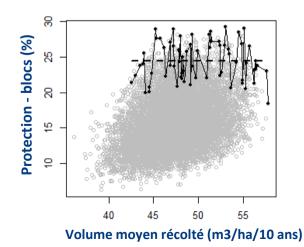
Lafond et al. subm. Environ Manag

Analyse des compromis


- Exploration des compromis grâce aux méta-modèles
 - Prédictions instantanées MM => Nb simulations ++
 - Contrôle des facteurs
 - ⇒ comparaison des fronts pour ≠
 - Niveaux démographiques
 - États initiaux
 - Front de Pareto
 - Détection des scénarii « optimau:
 - Analyse des compromis


Pour aller plus loin dans l'analyse des compromis


- Évaluation de scénarii de gestion?
 - Distance au front?
 - Possibilité d'améliorer la gestion?
 - => Mais comment y arriver?



Pour aller plus loin dans l'analyse des compromis

PERSPECTIVES

- Multi-indicateurs ... + améliorations (€, DMH)
- Conditions écologiques différentes / CC ?
 - Recalibration de Samsara2 / thèse G. Lagarrigues
 (Lagarrigues et al in press)
 - Avec FORCLIM (post-doc ETHZ)

Références IRSTEA ... à lire ;-)

- Berger F, Dorren LKA (2007) Principles of the tool Rockfor.net for quantifying the rockfall hazard below a protection forest. Schweizerische Zeitschrift fur Forstwesen 158:157-165
- Courbaud B., de Coligny F. & Cordonnier T. (2003) Simulating radiation distribution in a heterogeneous Norway spruce forest on a slope. Agricultural and Forest Meteorology, 116:1-18.
- Courbaud B., Goreaud F., Dreyfus P. et Bonnet F.R. (2001) Evaluating thinning strategies using a Tree Distance Dependent Growth Model: Some examples based on the CAPSIS software "Uneven-Aged Spruce Forests" module. Forest Ecology and Management, 145:15-28.
- Dufour-Kowalski S., B. Courbaud, P. Dreyfus, C. Meredieu and F. de Coligny, (2012) Capsis: an open software framework and community for forest growth modelling. Ann. For. Sci. 69(2): 221-233.
- Lafond V, Lagarrigues G, Cordonnier T, Courbaud B (2014) Uneven-aged management options to promote forest resilience for climate change adaptation: effects of group selection and harvesting intensity. Ann For Sci 71:173-186
- Lafond V, Cordonnier T, Courbaud B (in revision). Reconciling biodiversity conservation and timber production in mixed uneven-aged mountain forests: identification of ecological intensification pathways. Env Manag.
- Lafond V, Prieur C, Faivre R, Cordonnier T, Courbaud B (in prep). A 2-steps sensitivity analysis approach to study the response of ecosystem services to management: illustration with the case of uneven-aged mountain forests.
- Lagarrigues G, Jabot F, Lafond V, Courbaud B (in press) Approximate Bayesian computation to recalibrate individual-based models with population data: Illustration with a forest simulation model. Ecol Model
- Zilliox C, Gosselin F,2013. Tree species diversity and abundance as indicators of understory diversity in French mountain forests: Variations of the relationship in geographical and ecological space. For Ecol Manage Online First

Autres références bibliographiques

- **Baskent EZ, Keleş S (2009)** Developing alternative forest management planning strategies incorporating timber, water and carbon values: An examination of their interactions. Environmental Modeling and Assessment 14:467-480
- Baskent EZ, Keles S, Yolasigmaz HA (2008) Comparing multipurpose forest management with timber management, incorporating timber, carbon and oxygen values: A case study. Scand J Forest Res 23:105-120
- Campolongo F, Cariboni J, Saltelli A (2007) An effective screening design for sensitivity analysis of large models. Environmental Modelling & Software 22:1509-1518
- Ciric C, Ciffroy P, Charles S (2012) Use of sensitivity analysis to identify influential and non-influential parameters within an aquatic ecosystem model. Ecol Model 246:119-130
- Duncker PS, Raulund-Rasmussen K, Gundersen P, Katzensteiner K, De Jong J, Ravn HP, Smith M, Eckmüllner O, Spiecker H (2012) How forest management affects ecosystem services, including timber production and economic return: synergies and trade-offs. Ecol Soc 17
- Frehner, M., Wasser B., Schwitter, R. (2005) Nachhaltigkeit und Erfolgskontrolle im Schutzwald. Wegleitung für Pflegemassnahmen in Wäldern mit Schutzfunktion. © OFEV, Berne.
- Holeksa J, Zielonka T, Zywiec M, (2008) Modeling the decay of coarse woody debris in a subalpine Norway spruce forest of the West Carpathians, Poland. Can J For Res-Rev Can Rech For 38:415-428
- Owen AB (1992) Orthogonal arrays for computer experiments, integration and visualization. Stat Sin 2:439-452
- Schwenk WS, Donovan TM, Keeton WS, Nunery JS (2012) Carbon storage, timber production, and biodiversity: comparing ecosystem services with multi-criteria decision analysis. Ecol Appl 22:1612-1627
- Seidl R, Rammer W, Jager D, Currie WS, Lexer MJ (2007) Assessing trade-offs between carbon sequestration and timber production within a framework of multi-purpose forestry in Austria. For Ecol Manage 248:64-79
- Temperli C, Bugmann HKM, Elkin C (2012) Adaptive management for competing forest goods and services under climate change. Ecol Appl

